Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(20): 18255-18265, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251170

RESUMEN

Cocrystallization of the drug-drug salt-cocrystal of the histone deacetylase inhibitor (HDACi) panobinostat (PAN) and b-rapidly accelerated fibrosarcoma (BRAF) inhibitor dabrafenib (DBF) afforded single crystals of a two-drug salt stabilized by N+-H···O and N+-H···N- hydrogen bonds between the ionized panobinostat ammonium donor and dabrafenib sulfonamide anion acceptor in a 12-member ring motif. A faster dissolution rate for both drugs was achieved through the salt combination compared to the individual drugs in an aqueous acidic medium. The dissolution rate exhibited a peak concentration (Cmax) of approximately 310 mg cm-2 min-1 for PAN and 240 mg cm-2 min-1 for DBF at a Tmax of less than 20 min under gastric pH 1.2 (0.1 N HCl) compared to the pure drug dissolution values of 10 and 80 mg cm-2 min-1, respectively. The novel and fast-dissolving salt DBF-·PAN+ was analyzed in BRAFV600E melanoma cells Sk-Mel28. DBF-·PAN+ reduced the dose-response from micromolar to nanomolar concentrations and lowered IC50 (21.9 ± 7.2 nM) by half compared to PAN alone (45.3 ± 12.0 nM). The enhanced dissolution and lower survival rate of melanoma cells show the potential of novel DBF-·PAN+ salt in clinical evaluation.

2.
Mol Pharm ; 20(5): 2293-2316, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36974968

RESUMEN

Improving the solubility and permeability of drugs via cocrystallization is an important theme in crystal engineering with practical applications for the discovery and development of high bioavailability medicines. The past decade has witnessed a surge of publications on pharmaceutical cocrystals/salts to improve the permeability of Biopharmaceutics Classification System (BCS) class IV drugs. In this review article, the reader is introduced to the fundamentals of drug permeability mechanisms and then examples of pharmaceutical cocrystals and salts designed to enhance drug diffusion and permeability are presented, in order to understand the different structural factors that modulate drug flux and transport across a semipermeable membrane. Broadly, two main phenomena can be summarized from the 50 or so examples: (1) The heterosynthons in hydrogen-bonded drug-coformer aggregates survive long enough in the experimental media such that the drug, which is present in high concentration due to supersaturation, exhibits higher flux across the semipermeable membrane. (2) The coformer or cocrystal is able to reduce the transepithelial electrical resistance (TEER) values of lipid monolayers, which impairs their tight junctions, and facilitates drug passage to improve its diffusion/permeability. The medicinal chemistry literature on high permeability drugs is recapitulated with the idea that these principles may be utilized in the de novo design of high permeability coformers for the synthesis of improved-performance pharmaceutical cocrystals. Enhancing drug solubility and permeability without changing its molecular structure in supramolecular complexes of pharmaceutical cocrystals and salts will address the poor bioavailability challenge for a majority of BCS class II and IV drugs.


Asunto(s)
Química Farmacéutica , Sales (Química) , Biofarmacia , Disponibilidad Biológica , Preparaciones Farmacéuticas
3.
Colloids Surf B Biointerfaces ; 221: 112970, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332313

RESUMEN

Tau is a natively unfolded microtubule-associated protein. Tau neurofibrillary tangles are one of the hallmarks of Alzheimer's disease. The post-translational modifications of Tau lead to its pathological state. Phosphorylation is the key post-translational modification associated with Tauopathy. Curcumin is a polyphenolic compound present in the rhizomes of Curcuma longa. Curcumin has been reported to have remarkable medicinal properties in several diseases, but its poor solubility limits its therapeutic potency. Artemisinin is a sesquiterpene lactone, which has been known sience ancient times for its applications as a treatment for various diseases such as malaria, cancer, autoimmune disease, etc. In the present study, the potency of crystalline curcumin, crystalline artemisinin, and Cur-Art co-amorphous dispersion were evaluated against Tau pathology. The in-vitro ThS/ANS fluorescence and electron microscopy results suggested that curcumin and Cur-Art efficiently inhibited Tau aggregation. Furthermore, exposure to curcumin and Cur-Art co-amorphous restored the impaired nuclear transport in formaldehyde-stressed cells. Curcumin was also found to modulate the phosphorylation of Tau, which indicated the neuroprotective potency. Thus, curcumin and Cur-Art co-amorphous exhibit therapeutic potential against Tau protein in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Artemisininas , Curcumina , Humanos , Curcumina/química , Proteínas tau/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Fosforilación , Artemisininas/farmacología
4.
Angew Chem Int Ed Engl ; 61(39): e202207484, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35984673

RESUMEN

Starting from a molecular pharmacophore, which is a marker of drug action in medicinal molecules, we propose that the heterosynthon, a supramolecular synthon between unlike functional groups, plays an analogous role in the design and discovery of high bioavailability drugs. The heterosynthon could provide a more efficient and economical route to novel drugs.


Asunto(s)
Disponibilidad Biológica , Cristalización
5.
Chem Rev ; 122(13): 11514-11603, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35642550

RESUMEN

The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.


Asunto(s)
Química Farmacéutica , Disponibilidad Biológica , Cristalización , Preparaciones Farmacéuticas , Solubilidad
6.
Chem Commun (Camb) ; 58(37): 5582-5585, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393986

RESUMEN

Crystalline salts of the low solubility and low permeability drug naftopidil were investigated with mono-, di-, tri-, and tetrafluorobenzoic acids as coformers to show that 245TFBA (2,4,5-trifluorobenzoic acid) is the optimal salt with faster dissolution and high permeability, thereby opening the study of fluorinated coformers in pharmaceutical cocrystals and salts.


Asunto(s)
Sales (Química) , Cristalización , Naftalenos , Permeabilidad , Piperazinas , Sales (Química)/química , Solubilidad
7.
Eur J Pharm Sci ; 139: 105048, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31446077

RESUMEN

Co amorphous systems are supersaturated drug delivery systems which offer a basic platform for delivery of multicomponent adducts (combination of more than one active pharmaceutical ingredient (API)) and/or as a fixed dose combination therapy, in addition to their potential to improve the apparent solubility, dissolution rate and ultimately bioavailability of poorly water soluble APIs. In the present work, a new drug-drug co amorphous system namely valsartan-nifedipine was prepared by quench cooling technique. Prepared co amorphous system was characterized for its solid state behavior with the help of Fourier Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Powder X Ray Diffractometry (PXRD). The optimized co amorphous system was stable for 1 month when exposed to accelerated stability condition (40 ±â€¯2 °C and 75 ±â€¯5% RH). The improved stability of amorphous nifedipine in co amorphous system was attributed to improved miscibility and intra and intermolecular non-covalent interactions mainly due to presence of hydrogen bonding between valsartan and nifedipine which was studied by FTIR analysis. Co amorphous systems were evaluated by mainly in vitro dissolution and in vivo benefit. In vitro dissolution study showed nearly 5.66 folds and 1.61 folds improvement which was translated to 3.63 and 2.19 times enhancement in vivo Cmax for nifedipine and valsartan respectively.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Bloqueadores de los Canales de Calcio , Nifedipino , Valsartán , Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacocinética , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacocinética , Combinación de Medicamentos , Composición de Medicamentos , Liberación de Fármacos , Femenino , Nifedipino/química , Nifedipino/farmacocinética , Ratas Sprague-Dawley , Valsartán/química , Valsartán/farmacocinética
8.
Angew Chem Int Ed Engl ; 58(13): 4100-4107, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30488598

RESUMEN

Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA