RESUMEN
Circadian disruption causes glucose intolerance, cardiac fibrosis, and adipocyte dysfunction in sand rats (Psammomys obesus). Exercise intervention can improve glucose metabolism, insulin sensitivity, adipose tissue function and protect against inflammation. We investigated the influence of exercise on male P. obesus exposed to a short photoperiod (5 h light:19 h dark) and high-energy diet. Exercise reduced glucose intolerance. Exercise reduced cardiac expression of inflammatory marker Ccl2 and Bax:Bcl2 apoptosis ratio. Exercise increased heart:body weight ratio and hypertrophy marker Myh7:Myh6, yet reduced Gata4 expression. No phenotypic changes were observed in perivascular fibrosis and myocyte area. Exercise reduced visceral adipose expression of inflammatory transcription factor Rela, adipogenesis marker Ppard and browning marker Ppargc1a, but visceral adipocyte size was unaffected. Conversely, exercise reduced subcutaneous adipocyte size but did not affect any molecular mediators. Exercise increased ZT7 Bmal1 and Per2 in the suprachiasmatic nucleus and subcutaneous Per2. Our study provides new molecular insights and histological assessments on the effect of exercise on cardiac inflammation, adipose tissue dysfunction and circadian gene expression in P. obesus exposed to short photoperiod and high-energy diet. These findings have implications for the protective benefits of exercise for shift workers in order to reduce the risk of diabetes and cardiovascular disease.
Asunto(s)
Tejido Adiposo , Gerbillinae , Intolerancia a la Glucosa , Fotoperiodo , Condicionamiento Físico Animal , Animales , Masculino , Intolerancia a la Glucosa/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Dieta Alta en Grasa/efectos adversos , Miocardio/metabolismo , Miocardio/patologíaRESUMEN
Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.
Asunto(s)
Adipocitos , Fibrosis , Gerbillinae , Intolerancia a la Glucosa , Animales , Femenino , Adipocitos/metabolismo , Adipocitos/patología , Masculino , Intolerancia a la Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ritmo CircadianoRESUMEN
Angiogenesis is a critical physiological response to ischemia but becomes pathological when dysregulated and driven excessively by inflammation. We recently identified a novel angiogenic role for tripartite-motif-containing protein 2 (TRIM2) whereby lentiviral shRNA-mediated TRIM2 knockdown impaired endothelial angiogenic functions in vitro. This study sought to determine whether these effects could be translated in vivo and to determine the molecular mechanisms involved. CRISPR/Cas9-generated Trim2-/- mice that underwent a periarterial collar model of inflammation-induced angiogenesis exhibited significantly less adventitial macrophage infiltration relative to wildtype (WT) littermates, concomitant with decreased mRNA expression of macrophage marker Cd68 and reduced adventitial proliferating neovessels. Mechanistically, TRIM2 knockdown in endothelial cells in vitro attenuated inflammation-driven induction of critical angiogenic mediators, including nuclear HIF-1α, and curbed the phosphorylation of downstream effector eNOS. Conversely, in a hindlimb ischemia model of hypoxia-mediated angiogenesis, there were no differences in blood flow reperfusion to the ischemic hindlimbs of Trim2-/- and WT mice despite a decrease in proliferating neovessels and arterioles. TRIM2 knockdown in vitro attenuated hypoxia-driven induction of nuclear HIF-1α but had no further downstream effects on other angiogenic proteins. Our study has implications for understanding the role of TRIM2 in the regulation of angiogenesis in both pathophysiological contexts.
Asunto(s)
Angiogénesis , Células Endoteliales , Animales , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genéticaRESUMEN
Type 2 diabetes mellitus (T2DM) increases cardiac inflammation which promotes the development of cardiac fibrosis. We sought to determine the impact of circadian disruption on the induction of hyperglycaemia, inflammation and cardiac fibrosis. METHODS: Psammomys obesus (P. obesus) were exposed to neutral (12 h light:12 h dark) or short (5 h light:19 h dark) photoperiods and fed a low energy (LE) or high energy (HE) diet for 8 or 20 weeks. To determine daily rhythmicity, P. obesus were euthanised at 2, 8, 14, and 20 h after 'lights on'. RESULTS: P. obesus exposed to a short photoperiod for 8 and 20 weeks had impaired glucose tolerance following oral glucose tolerance testing, compared to a neutral photoperiod exposure. This occurred with both LE and HE diets but was more pronounced with the HE diet. Short photoperiod exposure also increased myocardial perivascular fibrosis after 20 weeks on LE (51%, P < 0.05) and HE (44%, P < 0.05) diets, when compared to groups with neutral photoperiod exposure. Short photoperiod exposure caused elevations in mRNA levels of hypertrophy gene Nppa (atrial natriuretic peptide) and hypertrophy transcription factors Gata4 and Mef2c in myocardial tissue after 8 weeks. CONCLUSION: Exposure to a short photoperiod causes impaired glucose tolerance in P. obesus that is exacerbated with HE diet and is accompanied by an induction in myocardial perivascular fibrosis.
Asunto(s)
Ritmo Circadiano , Dieta , Ingestión de Energía , Gerbillinae/fisiología , Prueba de Tolerancia a la Glucosa , Cardiopatías/etiología , Luz , Fotoperiodo , Animales , Apoptosis/genética , Factor Natriurético Atrial/genética , Glucemia/análisis , Diabetes Mellitus Tipo 2/etiología , Fibrosis/etiología , Fibrosis/genética , Regulación de la Expresión Génica/efectos de la radiación , Cardiopatías/genética , ARN Mensajero/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Dysfunctional adipose tissue phenotype underpins type 2 diabetes mellitus (T2DM) development. The disruption of circadian rhythms contributes to T2DM development. We investigated the effects of high-energy diet and photoperiod length on visceral and subcutaneous adipose tissue phenotype. Psammomys obesus sand rats exposed to neutral (12 light:12 dark) or short (5 light:19 dark) photoperiod were fed a low- (LE) or high- (HE) energy diet. The HE diet and/or short photoperiod reduced subcutaneous expression of adipocyte differentiation/function markers C/ebpα, Pparδ, Pparγ and Adipoq. Visceral Pparα levels were elevated in the 5:19HE group; however, the HE diet and/or short photoperiod decreased visceral Pparγ and Adipoq expression. 5:19HE animals had elevated Ucp1 yet lower Pgc-1α levels. The HE diet increased visceral Tgf-ß1, Ccl2 and Cd68 levels, suggestive of a pro-inflammatory state. Daily visceral rhythms of these genes were affected by a short photoperiod and/or HE diet. The 12:12HE, 5:19LE or 5:19HE animals had a higher proportion of larger adipocytes, indicating increased adipocyte hypertrophy. Collectively, the HE diet and/or shorter light exposure drives a dysfunctional adipose tissue phenotype. Daily rhythms are affected by a short photoperiod and HE diet in a site-specific manner. These findings provide mechanistic insight on the influence of disrupted circadian rhythms and HE diet on adipose tissue phenotype.
Asunto(s)
Adipocitos , Antígenos de Diferenciación/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa/efectos adversos , Grasa Intraabdominal , Luz , Grasa Subcutánea , Adipocitos/metabolismo , Adipocitos/patología , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Gerbillinae , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/patología , Fotoperiodo , Grasa Subcutánea/metabolismo , Grasa Subcutánea/patologíaRESUMEN
Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications.