Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 15(4): 931-947, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36584817

RESUMEN

BACKGROUND AND AIMS: The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. An imbalance in this highly regimented process within the intestinal crypts is associated with several intestinal pathologies. Although metabolic changes are known to play a pivotal role in cell proliferation and differentiation, how glycolysis contributes to intestinal epithelial homeostasis remains to be defined. METHODS: Small intestines were harvested from mice with specific hexokinase 2 (HK2) deletion in the intestinal epithelium or LGR5+ stem cells. Glycolysis was measured using the Seahorse XFe96 analyzer. Expression of phospho-p38 mitogen-activated protein kinase, the transcription factor atonal homolog 1, and intestinal cell differentiation markers lysozyme, mucin 2, and chromogranin A were determined by Western blot, quantitative real-time reverse transcription polymerase chain reaction, or immunofluorescence, and immunohistochemistry staining. RESULTS: HK2 is a target gene of Wnt signaling in intestinal epithelium. HK2 knockout or inhibition of glycolysis resulted in increased numbers of Paneth, goblet, and enteroendocrine cells and decreased intestinal stem cell self-renewal. Mechanistically, HK2 knockout resulted in activation of p38 mitogen-activated protein kinase and increased expression of ATOH1; inhibition of p38 mitogen-activated protein kinase signaling attenuated the phenotypes induced by HK2 knockout in intestinal organoids. HK2 knockout significantly decreased glycolysis and lactate production in intestinal organoids; supplementation of lactate or pyruvate reversed the phenotypes induced by HK2 knockout. CONCLUSIONS: Our results show that HK2 regulates intestinal stem cell self-renewal and differentiation through p38 mitogen-activated protein kinase/atonal homolog 1 signaling pathway. Our findings demonstrate an essential role for glycolysis in maintenance of intestinal stem cell function.


Asunto(s)
Autorrenovación de las Células , Glucólisis , Ratones , Animales , Diferenciación Celular , Vía de Señalización Wnt , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Lactatos
2.
Free Radic Biol Med ; 172: 90-100, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34087430

RESUMEN

The disturbance of strictly regulated self-regeneration in mammalian intestinal epithelium is associated with various intestinal disorders, particularly inflammatory bowel diseases (IBDs). TNFα, which plays a critical role in the pathogenesis of IBDs, has been reported to inhibit production of ketone bodies such as ß-hydroxybutyrate (ßHB). However, the role of ketogenesis in the TNFα-mediated pathological process is not entirely known. Here, we showed the regulation and role of HMGCS2, the rate-limiting enzyme of ketogenesis, in TNFα-induced apoptotic and inflammatory responses in intestinal epithelial cells. Treatment with TNFα dose-dependently decreased protein and mRNA expression of HMGCS2 and its product, ßHB production in human colon cancer cell lines HT29 and Caco2 cells and mouse small intestinal organoids. Moreover, the repressed level of HMGCS2 protein was found in intestinal epithelium of IBD patients with Crohn's disease and ulcerative colitis as compared with normal tissues. Furthermore, knockdown of HMGCS2 enhanced and in contrast, HMGCS2 overexpression attenuated, the TNFα-induced apoptosis and expression of pro-inflammatory chemokines (CXCL1-3) in HT29, Caco2 cells and DLD1 cells, respectively. Treatment with ßHB or rosiglitazone, an agonist of PPARγ, which increases ketogenesis, attenuated TNFα-induced apoptosis in the intestinal epithelial cells. Finally, HMGCS2 knockdown enhanced TNFα-induced reactive oxygen species (ROS) generation. In addition, hydrogen peroxide, the major ROS contributing to intestine injury, decreased HMGCS2 expression and ßHB production in the intestinal cells and mouse organoids. Our findings demonstrate that increased ketogenesis attenuates TNFα-induced apoptosis and inflammation in intestinal cells, suggesting a protective role for ketogenesis in TNFα-induced intestinal pathologies.


Asunto(s)
Hidroximetilglutaril-CoA Sintasa , Factor de Necrosis Tumoral alfa , Animales , Apoptosis , Células CACO-2 , Humanos , Mucosa Intestinal , Cuerpos Cetónicos , Ratones , Factor de Necrosis Tumoral alfa/genética
3.
Cancer Epidemiol Biomarkers Prev ; 28(2): 348-356, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30377206

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer mortality in the United States (U.S.). Squamous cell carcinoma (SQCC) represents 22.6% of all lung cancers nationally, and 26.4% in Appalachian Kentucky (AppKY), where death from lung cancer is exceptionally high. The Cancer Genome Atlas (TCGA) characterized genetic alterations in lung SQCC, but this cohort did not focus on AppKY residents. METHODS: Whole-exome sequencing was performed on tumor and normal DNA samples from 51 lung SQCC subjects from AppKY. Somatic genomic alterations were compared between the AppKY and TCGA SQCC cohorts. RESULTS: From this AppKY cohort, we identified an average of 237 nonsilent mutations per patient and, in comparison with TCGA, we found that PCMTD1 (18%) and IDH1 (12%) were more commonly altered in AppKY versus TCGA. Using IDH1 as a starting point, we identified a mutually exclusive mutational pattern (IDH1, KDM6A, KDM4E, JMJD1C) involving functionally related genes. We also found actionable mutations (10%) and/or intermediate or high-tumor mutation burden (65%), indicating potential therapeutic targets in 65% of subjects. CONCLUSIONS: This study has identified an increased percentage of IDH1 and PCMTD1 mutations in SQCC arising in the AppKY residents versus TCGA, with population-specific implications for the personalized treatment of this disease. IMPACT: Our study is the first report to characterize genomic alterations in lung SQCC from AppKY. These findings suggest population differences in the genetics of lung SQCC between AppKY and U.S. populations, highlighting the importance of the relevant population when developing personalized treatment approaches for this disease.


Asunto(s)
Carcinoma de Células Escamosas/genética , Isocitrato Deshidrogenasa/genética , Neoplasias Pulmonares/genética , Mutación , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Región de los Apalaches , Carcinoma de Células Escamosas/metabolismo , Femenino , Genómica , Humanos , Kentucky , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Población Blanca/genética , Secuenciación del Exoma
4.
Cell Death Dis ; 9(3): 265, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29449559

RESUMEN

Sterol regulatory element-binding proteins (SREBPs) belong to a family of transcription factors that regulate the expression of genes required for the synthesis of fatty acids and cholesterol. Three SREBP isoforms, SREBP1a, SREBP1c, and SREBP2, have been identified in mammalian cells. SREBP1a and SREBP1c are derived from a single gene through the use of alternative transcription start sites. Here we investigated the role of SREBP-mediated lipogenesis in regulating tumor growth and initiation in colon cancer. Knockdown of either SREBP1 or SREBP2 decreased levels of fatty acids as a result of decreased expression of SREBP target genes required for lipid biosynthesis in colon cancer cells. Bioenergetic analysis revealed that silencing SREBP1 or SREBP2 expression reduced the mitochondrial respiration, glycolysis, as well as fatty acid oxidation indicating an alteration in cellular metabolism. Consequently, the rate of cell proliferation and the ability of cancer cells to form tumor spheroids in suspension culture were significantly decreased. Similar results were obtained in colon cancer cells in which the proteolytic activation of SREBP was blocked. Importantly, knockdown of either SREBP1 or SREBP2 inhibited xenograft tumor growth in vivo and decreased the expression of genes associated with cancer stem cells. Taken together, our findings establish the molecular basis of SREBP-dependent metabolic regulation and provide a rationale for targeting lipid biosynthesis as a promising approach in colon cancer treatment.


Asunto(s)
Proliferación Celular , Neoplasias del Colon/metabolismo , Metabolismo Energético , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteolisis , Transducción de Señal , Esferoides Celulares , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Carga Tumoral
5.
Neoplasia ; 20(2): 175-181, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29272741

RESUMEN

Neurotensin (NTS), a 13-amino acid peptide which is distributed predominantly along gastrointestinal tract, has multiple physiologic and pathologic functions, and its effects are mediated by three distinct NTS receptors (NTSRs). Overexpression and activation of NTS signaling components, especially NTS and/or NTSR1, are closely linked with cancer progression and metastasis in various types of cancers including neuroendocrine tumors (NETs). Although deregulation of NTSR3/sortilin has been implicated in a variety of human diseases, the expression and role of NTSR3/sortilin in NETs have not been elucidated. In this study, we investigated the expression and oncogenic effect of NTSR3/sortilin in NETs. Increased protein levels of NTSR3/sortilin were noted in the majority of human clinical NETs (n=21) by immunohistochemical analyses compared with normal tissues (n=12). Expression of NTS and NTSR3/sortilin was also noted in all tested NET cell lines. In addition, small interfering RNA-mediated knockdown of NTSR3/sortilin decreased cell number without alteration of cell cycle progression and apoptosis induction in NET cell lines BON and QGP-1. Moreover, silencing of NTSR3/sortilin significantly suppressed cell adhesion and cell migration with inhibition of focal adhesion kinase and Src phosphorylation in the NET cells. Our results demonstrate increased expression of NTSR3/sortilin in NET patient tissues and a critical role of NTSR3/sortilin on NET cell adhesion and migration suggesting that NTSR3/sortilin contributes to NET tumorigenesis.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Carcinogénesis/patología , Adhesión Celular , Movimiento Celular , Tumores Neuroendocrinos/patología , Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Proteínas Adaptadoras del Transporte Vesicular/genética , Apoptosis , Carcinogénesis/genética , Carcinogénesis/metabolismo , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Células Tumorales Cultivadas
6.
Cell Death Dis ; 8(2): e2593, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28151470

RESUMEN

Obesity has been associated with increased incidence and mortality of a wide variety of human cancers including colorectal cancer. However, the molecular mechanism by which adipocytes regulate the metabolism of colon cancer cells remains elusive. In this study, we showed that adipocytes isolated from adipose tissues of colon cancer patients have an important role in modulating cellular metabolism to support tumor growth and survival. Abundant adipocytes were found in close association with invasive tumor cells in colon cancer patients. Co-culture of adipocytes with colon cancer cells led to a transfer of free fatty acids that released from the adipocytes to the cancer cells. Uptake of fatty acids allowed the cancer cells to survive nutrient deprivation conditions by upregulating mitochondrial fatty acid ß-oxidation. Mechanistically, co-culture of adipocytes or treating cells with fatty acids induced autophagy in colon cancer cells as a result of AMPK activation. Inhibition of autophagy attenuated the ability of cancer cells to utilize fatty acids and blocked the growth-promoting effect of adipocytes. In addition, we found that adipocytes stimulated the expression of genes associated with cancer stem cells and downregulated genes associated with intestinal epithelial cell differentiation in primary colon cancer cells and mouse tumor organoids. Importantly, the presence of adipocytes promoted the growth of xenograft tumors in vivo. Taken together, our results show that adipocytes in the tumor microenvironment serve as an energy provider and a metabolic regulator to promote the growth and survival of colon cancer cells.


Asunto(s)
Adipocitos/metabolismo , Autofagia/fisiología , Neoplasias del Colon/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Autofagia/genética , Diferenciación Celular/genética , Línea Celular , Línea Celular Tumoral , Técnicas de Cocultivo/métodos , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Expresión Génica/genética , Humanos , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Ratones , Mitocondrias/genética , Mitocondrias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Oxidación-Reducción , Microambiente Tumoral/genética
7.
Carcinogenesis ; 34(5): 953-61, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23354304

RESUMEN

Carcinoid tumors are rare neuroendocrine tumors (NETs) that are increasing in incidence. Mutation and altered expression of Wnt/ß-catenin signaling components have been described in many tumors but have not been well-studied in NETs. Here, we observed accumulation of ß-catenin in the cytoplasm and/or nucleus in 25% of clinical NET tissues. By mutational analysis, the mutations of ß-catenin (I35S) and APC (E1317Q, T1493T) were identified in NET cells and the tissues. Expression of representative Wnt inhibitors was absent or markedly decreased in BON, a human pancreatic carcinoid cell line; treatment with 5-aza-2'-deoxycytidine (5-aza-CdR) increased expression levels of the Wnt inhibitors. Methylation analyses demonstrated that CpG islands of SFRP-1 and Axin-2 were methylated, whereas the promoters of DKK-1, DKK-3 and WIF-1 were unmethylated in four NET cells. Aberrant methylation of SFRP-1 was particularly observed in most of clinical NET tissues. In addition, the repression of these unmethylated genes was associated with histone H3 lysine 9 dimethylation (H3K9me2) in BON cells. Together, 5-aza-CdR treatment inhibited cell proliferation and decreased the protein levels of H3K9me2 and G9a. Moreover, a novel G9a inhibitor, UNC0638, suppressed BON cell proliferation through inhibition of Wnt/ß-catenin pathway. Overexpression of the inhibitory genes, particularly SFRP-1 and WIF-1 in BON cells, resulted in suppression of anchorage-independent growth and inhibition of tumor growth in mice. Our findings suggest that aberrant Wnt/ß-catenin signaling, through either mutations or epigenetic silencing of Wnt antagonists, contributes to the pathogenesis and growth of NETs and have important clinical implications for the prognosis and treatment of NETs.


Asunto(s)
Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Islas de CpG , Citoplasma/genética , Citoplasma/metabolismo , Metilación de ADN , Análisis Mutacional de ADN/métodos , Epigénesis Genética , Epigenómica/métodos , Expresión Génica/genética , Genes APC , Genes Supresores de Tumor , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Desnudos , Mutación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Transcripción Genética/genética
8.
PLoS Pathog ; 4(8): e1000139, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18769716

RESUMEN

Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.


Asunto(s)
Priones/metabolismo , Pliegue de Proteína , Enfermedad Debilitante Crónica/metabolismo , Enfermedad Debilitante Crónica/transmisión , Animales , Ciervos , Femenino , Ratones , Ratones Transgénicos , Especificidad de la Especie , Enfermedad Debilitante Crónica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...