Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 209: 111326, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38701595

RESUMEN

Thorium-227 was separated from its progeny and standardized for activity by the triple-to-double coincidence ratio (TDCR) method of liquid scintillation counting. Confirmatory liquid scintillation-based measurements were made using efficiency tracing with 3H and live-timed anticoincidence counting (LTAC). The separation time and the efficiency of the separation were confirmed by gamma-ray spectrometry. Calibrations for reentrant pressurized ionization chambers, including commercial radionuclide calibrators, and a well-type NaI(Tl) detector are discussed.

2.
PLoS One ; 16(3): e0248133, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33662039

RESUMEN

Alpha-particle emitting radionuclides continue to be the subject of medical research because of their high energy and short range of action that facilitate effective cancer therapies. Radium-224 (224Ra) is one such candidate that has been considered for use in combating micrometastatic disease. In our prior studies, a suspension of 224Ra-labeled calcium carbonate (CaCO3) microparticles was designed as a local therapy for disseminated cancers in the peritoneal cavity. The progenies of 224Ra, of which radon-220 (220Rn) is the first, together contribute three of the four alpha particles in the decay chain. The proximity of the progenies to the delivery site at the time of decay of the 224Ra-CaCO3 microparticles can impact its therapeutic efficacy. In this study, we show that the diffusion of 220Rn was reduced in labeled CaCO3 suspensions as compared with cationic 224Ra solutions, both in air and liquid volumes. Furthermore, free-floating lead-212 (212Pb), which is generated from released 220Rn, had the potential to be re-adsorbed onto CaCO3 microparticles. Under conditions mimicking an in vivo environment, more than 70% of the 212Pb was adsorbed onto the CaCO3 at microparticle concentrations above 1 mg/mL. Further, the diffusion of 220Rn seemed to occur whether the microparticles were labeled by the surface adsorption of 224Ra or if the 224Ra was incorporated into the bulk of the microparticles. The therapeutic benefit of differently labeled 224Ra-CaCO3 microparticles after intraperitoneal administration was similar when examined in mice bearing intraperitoneal ovarian cancer xenografts. In conclusion, both the release of 220Rn and re-adsorption of 212Pb are features that have implications for the radiotherapeutic use of 224Ra-labeled CaCO3 microparticles. The release of 220Rn through diffusion may extend the effective range of alpha-particle dose deposition, and the re-adsorption of the longer lived 212Pb onto the CaCO3 microparticles may enhance the retention of this nuclide in the peritoneal cavity.


Asunto(s)
Carbonato de Calcio/química , Radioisótopos de Plomo/uso terapéutico , Neoplasias Ováricas/radioterapia , Radón/uso terapéutico , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Appl Radiat Isot ; 170: 109572, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33461017

RESUMEN

The national metrology institutes for the United Kingdom (UK) and the United States of America (USA) have compared activity standards for 224Ra, an α-particle emitter of interest as the basis for therapeutic radiopharmaceuticals. Solutions of 224RaCl2 were assayed by absolute methods, including digital coincidence counting and triple-to-double coincidence ratio liquid scintillation counting. Ionization chamber and high-purity germanium (HPGe) γ-ray spectrometry calibrations were compared; further, a solution was shipped between laboratories for a direct comparison by HPGe spectrometry. New determinations of the absolute emission intensity for the 241 keV γ ray (Iγ = 4.011(16) per 100 disintegrations of 224Ra) and of the 224Ra half-life (T1/2 = 3.6313(14) d) are presented and discussed in the context of previous measurements and evaluations.

4.
Curr Radiopharm ; 14(2): 145-153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33261548

RESUMEN

BACKGROUND: Patients with advanced-stage ovarian cancer face a poor prognosis because of recurrent peritoneal cavity metastases following surgery and chemotherapy. Alpha-emitters may enable the efficient treatment of such disseminated diseases because of their short range and highly energetic radiation. Radium-224 is a candidate α-emitter due to its convenient 3.6-day half-life, with more than 90% of the decay energy originating from α-particles. However, its inherent skeletal accumulation must be overcome to facilitate intraperitoneal delivery of the radiation dose. Therefore, 224Ra-labeled CaCO3 microparticles have been developed. OBJECTIVE: The antitumor effect of CaCO3 microparticles as a carrier for 224Ra was investigated, with an emphasis on the ratio of activity to mass dose of CaCO3, that is, specific activity. METHODS: Nude athymic mice were inoculated intraperitoneally with human ovarian cancer cells (ES-2) and treated with a single intraperitoneal injection of 224Ra-labeled CaCO3 microparticles with varying combinations of mass and activity dose, or cationic 224Ra in solution. Survival and ascites volume at sacrifice were evaluated. RESULTS: Significant therapeutic effect was achieved for all tested specific activities ranging from 0.4 to 4.6 kBq/mg. Although treatment with a mean activity dose of 1305 kBq/kg of cationic 224Ra prolonged the survival compared with the control, equivalent median survival could be achieved with 224Ra-labeled microparticles with a mean dose of only 420 kBq/kg. The best outcome was achieved with the highest specific activities (2.6 and 4.6 kBq/mg). CONCLUSION: Radium-224-labeled CaCO3 microparticles present a promising therapy against cancer dissemination in body cavities.


Asunto(s)
Carbonato de Calcio/farmacología , Neoplasias Ováricas/radioterapia , Radiofármacos/farmacología , Radio (Elemento)/farmacología , Torio/farmacología , Partículas alfa/uso terapéutico , Animales , Sistemas de Liberación de Medicamentos , Femenino , Ratones , Neoplasias Ováricas/patología , Tamaño de la Partícula , Dosificación Radioterapéutica
5.
Appl Radiat Isot ; 166: 109362, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32979756

RESUMEN

Lead-212 is a promising radionuclide for cancer therapy, but no primary 212Pb activity standardization has been published. A need therefore exists for accurate estimation of injected doses of 212Pb activity in equilibrium with progeny, when it comes to preclinical and clinical trials. In this study, 212Pb activity was determined using a high purity germanium (HPGe) detector, which allowed the determination of geometry-specific calibration factors for commercially available reentrant ionization chambers (ICs) and sodium iodide (NaI) detectors.

6.
Appl Radiat Isot ; 164: 109265, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32763787

RESUMEN

A suspension of 224Ra adsorbed onto CaCO3 microparticles shows promise for α-therapy of intracavitary micro-metastatic diseases. To facilitate accurate activity administrations, geometry-specific calibration factors for commercially available reentrant ionization chambers (ICs) have been developed for 224RaCl2 solutions and 224Ra adsorbed onto CaCO3 microparticles in suspension in ampoules, vials, and syringes. Ampoules and vials give IC responses consistent with each other to <1%. Microparticles attenuation leads to a ≈1% to ≈2.5% reduction in response in the geometries studied.

7.
Appl Radiat Isot ; 155: 108933, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31654881

RESUMEN

A standard for activity of 224Ra in secular equilibrium with its progeny has been developed, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency tracing and 4παß(LS)-γ(NaI(Tl)) anticoincidence counting, as well as by 4πγ ionization chamber and NaI(Tl) measurements. Secondary standard ionization chambers were calibrated with an expanded uncertainty of 0.62% (k = 2). Calibration settings were also determined for a 5 mL flame-sealed ampoule on several commercial reentrant ionization chambers (dose calibrators).

8.
J Labelled Comp Radiopharm ; 61(6): 472-486, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29380410

RESUMEN

Internal therapy with α-emitters should be well suited for micrometastatic disease. Radium-224 emits multiple α-particles through its decay and has a convenient 3.6 days of half-life. Despite its attractive properties, the use of 224 Ra has been limited to bone-seeking applications because it cannot be stably bound to a targeting molecule. Alternative delivery systems for 224 Ra are therefore of considerable interest. In this study, calcium carbonate microparticles are proposed as carriers for 224 Ra, designed for local therapy of disseminated cancers in cavitary regions, such as peritoneal carcinomatosis. Calcium carbonate microparticles were radiolabeled by precipitation of 224 Ra on the particle surface, resulting in high labeling efficiencies for both 224 Ra and daughter 212 Pb and retention of more than 95% of these nuclides for up to 1 week in vitro. The biodistribution after intraperitoneal administration of the 224 Ra-labeled CaCO3 microparticles in immunodeficient mice revealed that the radioactivity mainly remained in the peritoneal cavity. In addition, the systemic distribution of 224 Ra was found to be strongly dependent on the amount of administered microparticles, with a reduced skeletal uptake of 224 Ra with increasing dose. The results altogether suggest that the 224 Ra-labeled CaCO3 microparticles have promising properties for use as a localized internal α-therapy of cavitary cancers.


Asunto(s)
Carbonato de Calcio/química , Cápsulas/síntesis química , Radiofármacos/síntesis química , Radioterapia/métodos , Radio (Elemento)/uso terapéutico , Torio/uso terapéutico , Animales , Cápsulas/farmacocinética , Cápsulas/uso terapéutico , Ratones , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Radio (Elemento)/administración & dosificación , Torio/administración & dosificación , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...