Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Tuberculosis (Edinb) ; 95(2): 142-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25613812

RESUMEN

High-resolution three-dimensional structures of essential Mycobacterium tuberculosis (Mtb) proteins provide templates for TB drug design, but are available for only a small fraction of the Mtb proteome. Here we evaluate an intra-genus "homolog-rescue" strategy to increase the structural information available for TB drug discovery by using mycobacterial homologs with conserved active sites. Of 179 potential TB drug targets selected for x-ray structure determination, only 16 yielded a crystal structure. By adding 1675 homologs from nine other mycobacterial species to the pipeline, structures representing an additional 52 otherwise intractable targets were solved. To determine whether these homolog structures would be useful surrogates in TB drug design, we compared the active sites of 106 pairs of Mtb and non-TB mycobacterial (NTM) enzyme homologs with experimentally determined structures, using three metrics of active site similarity, including superposition of continuous pharmacophoric property distributions. Pair-wise structural comparisons revealed that 19/22 pairs with >55% overall sequence identity had active site Cα RMSD <1 Å, >85% side chain identity, and ≥80% PSAPF (similarity based on pharmacophoric properties) indicating highly conserved active site shape and chemistry. Applying these results to the 52 NTM structures described above, 41 shared >55% sequence identity with the Mtb target, thus increasing the effective structural coverage of the 179 Mtb targets over three-fold (from 9% to 32%). The utility of these structures in TB drug design can be tested by designing inhibitors using the homolog structure and assaying the cognate Mtb enzyme; a promising test case, Mtb cytidylate kinase, is described. The homolog-rescue strategy evaluated here for TB is also generalizable to drug targets for other diseases.


Asunto(s)
Antituberculosos/farmacología , Diseño de Fármacos , Terapia Molecular Dirigida/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/química , Proteínas Bacterianas/química , Biología Computacional/métodos , Cristalografía por Rayos X/métodos , Bases de Datos de Proteínas , Activación Enzimática , Genómica/métodos , Humanos , Modelos Moleculares , Mycobacterium/clasificación , Mycobacterium/enzimología , Mycobacterium/genética , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Relación Estructura-Actividad Cuantitativa , Especificidad de la Especie
2.
PLoS One ; 8(1): e53851, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382856

RESUMEN

BACKGROUND: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. METHODOLOGY/PRINCIPAL FINDINGS: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. CONCLUSIONS/SIGNIFICANCE: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request.


Asunto(s)
Infecciones por Burkholderia/genética , Burkholderia pseudomallei/genética , Genómica , Redes y Vías Metabólicas/genética , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia pseudomallei/patogenicidad , Biología Computacional , Bases de Datos de Proteínas , Diseño de Fármacos , Genes Esenciales , Genoma Bacteriano , Humanos , Filogenia , Conformación Proteica
3.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 9): 1194-200, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22948920

RESUMEN

The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Giardia lamblia/química , Modelos Moleculares , Estructura Terciaria de Proteína
4.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 998-1005, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904040

RESUMEN

The recombinant expression of soluble proteins in Escherichia coli continues to be a major bottleneck in structural genomics. The establishment of reliable protocols for the performance of small-scale expression and solubility testing is an essential component of structural genomic pipelines. The SSGCID Protein Production Group at the University of Washington (UW-PPG) has developed a high-throughput screening (HTS) protocol for the measurement of protein recovery from immobilized metal-affinity chromatography (IMAC) which predicts successful purification of hexahistidine-tagged proteins. The protocol is based on manual transfer of samples using multichannel pipettors and 96-well plates and does not depend on the use of robotic platforms. This protocol has been applied to evaluate the expression and solubility of more than 4000 proteins expressed in E. coli. The UW-PPG also screens large-scale preparations for recovery from IMAC prior to purification. Analysis of these results show that our low-cost non-automated approach is a reliable method for the HTS demands typical of large structural genomic projects. This paper provides a detailed description of these protocols and statistical analysis of the SSGCID screening results. The results demonstrate that screening for proteins that yield high recovery after IMAC, both after small-scale and large-scale expression, improves the selection of proteins that can be successfully purified and will yield a crystal structure.


Asunto(s)
Cromatografía de Afinidad/métodos , Cristalografía por Rayos X , Proteínas/aislamiento & purificación , Secuencia de Bases , Datos de Secuencia Molecular , Níquel/química , Unión Proteica , Proteínas/química , Alineación de Secuencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-21904041

RESUMEN

Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies.


Asunto(s)
Escherichia coli/metabolismo , Proteínas de Unión a Maltosa/aislamiento & purificación , Expresión Génica , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-21904042

RESUMEN

The establishment of an efficient and reliable protein-purification pipeline is essential for the success of structural genomic projects. The SSGCID Protein Purification Group at the University of Washington (UW-PPG) has established a robust protein-purification pipeline designed to purify 400 proteins per year at a rate of eight purifications per week. The pipeline was implemented using two ÄKTAexplorer 100 s and four ÄKTAprimes to perform immobilized metal-affinity chromatography (IMAC) and size-exclusion chromatography. Purifications were completed in a period of 5 d and yielded an average of 53 mg highly purified protein. This paper provides a detailed description of the methods used to purify, characterize and store SSGCID proteins. Some of the purified proteins were treated with 3C protease, which was expressed and purified by UW-PPG using a similar protocol, to cleave non-native six-histidine tags. The cleavage was successful in 94% of 214 attempts. Cleaved proteins yielded 2.9% more structures than uncleaved six-histidine-tagged proteins. This 2.9% improvement may seem small, but over the course of the project the structure output from UW-PPG is thus predicted to increase from 260 structures to 318 structures. Therefore, the outlined protocol with 3C cleavage and subtractive IMAC has been shown to be a highly efficient method for the standardized purification of recombinant proteins for structure determination via X-ray crystallography.


Asunto(s)
Genómica , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Enfermedades Transmisibles , Proteínas/genética
7.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1078-83, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904053

RESUMEN

Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg(2+)-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved `Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed ß-sheet with the central two ß-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg(2+), is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T(m) of 333 K.


Asunto(s)
Bartonella henselae/enzimología , Magnesio/química , Pirofosfatasas/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pirofosfatasas/metabolismo , Homología Estructural de Proteína , Hidrolasas Nudix
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1106-12, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904058

RESUMEN

The crystal structure of a ß-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein.


Asunto(s)
Brucella melitensis/enzimología , beta-Lactamasas/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1129-36, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904062

RESUMEN

Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H(2)AsO(4)(-)), a compound that is toxic to bacteria, to arsenite ion (AsO(2)(-)), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed ß-sheet flanked by two α-helices on one side and an α-helical bundle. The α/ß domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with (15)N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX(3)CX(3)R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins.


Asunto(s)
Proteínas Bacterianas/química , Brucella melitensis/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína , Homología Estructural de Proteína
10.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1148-53, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904065

RESUMEN

Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded antiparallel ß-sheet (ß2-ß1-ß3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first ß-strand and the second pair of cysteine residues is towards the C-terminal end of the loop between ß2 and ß3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K.


Asunto(s)
Mycobacterium tuberculosis/química , Rubredoxinas/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estabilidad Proteica , Estructura Terciaria de Proteína
11.
Anal Bioanal Chem ; 401(5): 1585-91, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21750879

RESUMEN

Ultrafiltration provides a generic method to discover ligands for protein drug targets with millimolar to micromolar K(d), the typical range of fragment-based drug discovery. This method was tailored to a 96-well format, and cocktails of fragment-sized molecules, with molecular masses between 150 and 300 Da, were screened against medical structural genomics target proteins. The validity of the method was confirmed through competitive binding assays in the presence of ligands known to bind the target proteins.


Asunto(s)
Descubrimiento de Drogas/métodos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ultrafiltración/métodos , Unión Competitiva , Escherichia coli/metabolismo , Ligandos , Plasmodium yoelii/metabolismo , Unión Proteica , Trypanosoma brucei brucei/metabolismo
12.
J Mol Biol ; 409(2): 159-76, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21420975

RESUMEN

The single tyrosyl-tRNA synthetase (TyrRS) gene in trypanosomatid genomes codes for a protein that is twice the length of TyrRS from virtually all other organisms. Each half of the double-length TyrRS contains a catalytic domain and an anticodon-binding domain; however, the two halves retain only 17% sequence identity to each other. The structural and functional consequences of this duplication and divergence are unclear. TyrRS normally forms a homodimer in which the active site of one monomer pairs with the anticodon-binding domain from the other. However, crystal structures of Leishmania major TyrRS show that, instead, the two halves of a single molecule form a pseudo-dimer resembling the canonical TyrRS dimer. Curiously, the C-terminal copy of the catalytic domain has lost the catalytically important HIGH and KMSKS motifs characteristic of class I aminoacyl-tRNA synthetases. Thus, the pseudo-dimer contains only one functional active site (contributed by the N-terminal half) and only one functional anticodon recognition site (contributed by the C-terminal half). Despite biochemical evidence for negative cooperativity between the two active sites of the usual TyrRS homodimer, previous structures have captured a crystallographically-imposed symmetric state. As the L. major TyrRS pseudo-dimer is inherently asymmetric, conformational variations observed near the active site may be relevant to understanding how the state of a single active site is communicated across the dimer interface. Furthermore, substantial differences between trypanosomal TyrRS and human homologs are promising for the design of inhibitors that selectively target the parasite enzyme.


Asunto(s)
Flavonoides/metabolismo , Leishmania major/enzimología , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo , Tirosina/análogos & derivados , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Flavonoles , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Tirosina/metabolismo
13.
Antimicrob Agents Chemother ; 55(5): 1982-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21282428

RESUMEN

Human African trypanosomiasis continues to be an important public health threat in extensive regions of sub-Saharan Africa. Treatment options for infected patients are unsatisfactory due to toxicity, difficult administration regimes, and poor efficacy of available drugs. The aminoacyl-tRNA synthetases were selected as attractive drug targets due to their essential roles in protein synthesis and cell survival. Comparative sequence analysis disclosed differences between the trypanosome and mammalian methionyl-tRNA synthetases (MetRSs) that suggested opportunities for selective inhibition using drug-like molecules. Experiments using RNA interference on the single MetRS of Trypanosoma brucei demonstrated that this gene product was essential for normal cell growth. Small molecules (diaryl diamines) similar to those shown to have potent activity on prokaryotic MetRS enzymes were synthesized and observed to have inhibitory activity on the T. brucei MetRS (50% inhibitory concentration, <50 nM) and on bloodstream forms of T. brucei cultures (50% effective concentration, as low as 4 nM). Twenty-one compounds had a close correlation between enzyme binding/inhibition and T. brucei growth inhibition, indicating that they were likely to be acting on the intended target. The compounds had minimal effects on mammalian cell growth at 20 µM, demonstrating a wide therapeutic index. The most potent compound was tested in the murine model of trypanosomiasis and demonstrated profound parasite suppression and delayed mortality. A homology model of the T. brucei MetRS based on other MetRS structures was used to model binding of the lead diaryl diamine compounds. Future studies will focus on improving the pharmacological properties of the MetRS inhibitors.


Asunto(s)
Metionina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Northern Blotting , Proliferación Celular/efectos de los fármacos , Diaminas/farmacología , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Tripanocidas/uso terapéutico , Trypanosoma brucei brucei/enzimología
14.
Mol Biochem Parasitol ; 177(1): 20-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21255615

RESUMEN

Tryptophanyl-tRNA synthetase (TrpRS) is an essential enzyme that is recognizably conserved across all forms of life. It is responsible for activating and attaching tryptophan to a cognate tRNA(Trp) molecule for use in protein synthesis. In some eukaryotes this original core function has been supplemented or modified through the addition of extra domains or the expression of variant TrpRS isoforms. The three TrpRS structures from pathogenic protozoa described here represent three illustrations of this malleability in eukaryotes. The Cryptosporidium parvum genome contains a single TrpRS gene, which codes for an N-terminal domain of uncertain function in addition to the conserved core TrpRS domains. Sequence analysis indicates that this extra domain, conserved among several apicomplexans, is related to the editing domain of some AlaRS and ThrRS. The C. parvum enzyme remains fully active in charging tRNA(Trp) after truncation of this extra domain. The crystal structure of the active, truncated enzyme is presented here at 2.4Å resolution. The Trypanosoma brucei genome contains separate cytosolic and mitochondrial isoforms of TrpRS that have diverged in their respective tRNA recognition domains. The crystal structure of the T. brucei cytosolic isoform is presented here at 2.8Å resolution. The Entamoeba histolytica genome contains three sequences that appear to be TrpRS homologs. However one of these, whose structure is presented here at 3.0Å resolution, has lost the active site motifs characteristic of the Class I aminoacyl-tRNA synthetase catalytic domain while retaining the conserved features of a fully formed tRNA(Trp) recognition domain. The biological function of this variant E. histolytica TrpRS remains unknown, but, on the basis of a completely conserved tRNA recognition region and evidence for ATP but not tryptophan binding, it is tempting to speculate that it may perform an editing function. Together with a previously reported structure of an unusual TrpRS from Giardia, these protozoan structures broaden our perspective on the extent of structural variation found in eukaryotic TrpRS homologs.


Asunto(s)
Cryptosporidium parvum/enzimología , Entamoeba histolytica/enzimología , Proteínas Protozoarias/química , Trypanosoma brucei brucei/enzimología , Triptófano-ARNt Ligasa/química , Secuencia de Aminoácidos , Sitios de Unión , Cryptosporidium parvum/química , Cryptosporidium parvum/genética , Cristalografía por Rayos X , Entamoeba histolytica/química , Entamoeba histolytica/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Alineación de Secuencia , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo
15.
OMICS ; 15(1-2): 73-82, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21250827

RESUMEN

High-throughput (HTP) proteomics studies generate large amounts of data. Interpretation of these data requires effective approaches to distinguish noise from biological signal, particularly as instrument and computational capacity increase and studies become more complex. Resolving this issue requires validated and reproducible methods and models, which in turn requires complex experimental and computational standards. The absence of appropriate standards and data sets for validating experimental and computational workflows hinders the development of HTP proteomics methods. Most protein standards are simple mixtures of proteins or peptides, or undercharacterized reference standards in which the identity and concentration of the constituent proteins is unknown. The Seattle Children's 200 (SC-200) proposed proteomics standard mixture is the next step toward developing realistic, fully characterized HTP proteomics standards. The SC-200 exhibits a unique modular design to extend its functionality, and consists of 200 proteins of known identities and molar concentrations from 6 microbial genomes, distributed into 10 molar concentration tiers spanning a 1,000-fold range. We describe the SC-200's design, potential uses, and initial characterization. We identified 84% of SC-200 proteins with an LTQ-Orbitrap and 65% with an LTQ-Velos (false discovery rate = 1% for both). There were obvious trends in success rate, sequence coverage, and spectral counts with protein concentration; however, protein identification, sequence coverage, and spectral counts vary greatly within concentration levels.


Asunto(s)
Proteómica , Estándares de Referencia
16.
Mol Biochem Parasitol ; 176(2): 98-108, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21195115

RESUMEN

Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3ß (HsGSK-3ß) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Isoformas de Proteínas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/antagonistas & inhibidores , Secuencias de Aminoácidos/efectos de los fármacos , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli , Expresión Génica , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Cinética , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Leishmania infantum/metabolismo , Leishmania major/efectos de los fármacos , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/genética , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/metabolismo , Modelos Moleculares , Mutación , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Relación Estructura-Actividad , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
17.
Mol Biochem Parasitol ; 175(1): 21-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20813141

RESUMEN

The efficacy of most marketed antimalarial drugs has been compromised by evolution of parasite resistance, underscoring an urgent need to find new drugs with new mechanisms of action. We have taken a high-throughput approach toward identifying novel antimalarial chemical inhibitors of prioritized drug targets for Plasmodium falciparum, excluding targets which are inhibited by currently used drugs. A screen of commercially available libraries identified 5655 low molecular weight compounds that inhibit growth of P. falciparum cultures with EC(50) values below 1.25µM. These compounds were then tested in 384- or 1536-well biochemical assays for activity against nine Plasmodium enzymes: adenylosuccinate synthetase (AdSS), choline kinase (CK), deoxyuridine triphosphate nucleotidohydrolase (dUTPase), glutamate dehydrogenase (GDH), guanylate kinase (GK), N-myristoyltransferase (NMT), orotidine 5'-monophosphate decarboxylase (OMPDC), farnesyl pyrophosphate synthase (FPPS) and S-adenosylhomocysteine hydrolase (SAHH). These enzymes were selected using TDRtargets.org, and are believed to have excellent potential as drug targets based on criteria such as their likely essentiality, druggability, and amenability to high-throughput biochemical screening. Six of these targets were inhibited by one or more of the antimalarial scaffolds and may have potential use in drug development, further target validation studies and exploration of P. falciparum biochemistry and biology.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/aislamiento & purificación , Inhibidores Enzimáticos/aislamiento & purificación , Enzimas/metabolismo , Concentración 50 Inhibidora , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/antagonistas & inhibidores
18.
Biochimie ; 93(3): 570-82, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21144880

RESUMEN

Leishmania parasites cause two million new cases of leishmaniasis each year with several hundreds of millions of people at risk. Due to the paucity and shortcomings of available drugs, we have undertaken the crystal structure determination of a key enzyme from Leishmania major in hopes of creating a platform for the rational design of new therapeutics. Crystals of the catalytic core of methionyl-tRNA synthetase from L. major (LmMetRS) were obtained with the substrates MgATP and methionine present in the crystallization medium. These crystals yielded the 2.0 Å resolution structure of LmMetRS in complex with two products, methionyladenylate and pyrophosphate, along with a Mg(2+) ion that bridges them. This is the first class I aminoacyl-tRNA synthetase (aaRS) structure with pyrophosphate bound. The residues of the class I aaRS signature sequence motifs, KISKS and HIGH, make numerous contacts with the pyrophosphate. Substantial differences between the LmMetRS structure and previously reported complexes of Escherichia coli MetRS (EcMetRS) with analogs of the methionyladenylate intermediate product are observed, even though one of these analogs only differs by one atom from the intermediate. The source of these structural differences is attributed to the presence of the product pyrophosphate in LmMetRS. Analysis of the LmMetRS structure in light of the Aquifex aeolicus MetRS-tRNA(Met) complex shows that major rearrangements of multiple structural elements of enzyme and/or tRNA are required to allow the CCA acceptor triplet to reach the methionyladenylate intermediate in the active site. Comparison with sequences of human cytosolic and mitochondrial MetRS reveals interesting differences near the ATP- and methionine-binding regions of LmMetRS, suggesting that it should be possible to obtain compounds that selectively inhibit the parasite enzyme.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Difosfatos/metabolismo , Leishmania major/enzimología , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/metabolismo , Metionina/análogos & derivados , Nucleótidos de Adenina/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Difosfatos/química , Escherichia coli/enzimología , Bacterias Gramnegativas/enzimología , Humanos , Magnesio/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Triptófano-ARNt Ligasa/metabolismo
19.
J Struct Biol ; 171(2): 238-43, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20438846

RESUMEN

The 2.1A crystal structure of tryptophanyl-tRNA synthetase (TrpRS) from the diplomonad Giardia lamblia reveals that the N-terminus of this class I aminoacyl-tRNA synthetase forms a 16-residue alpha-helix. This helix replaces a beta-hairpin that is required by human TrpRS for normal activity and has been inferred to play a similar role in all eukaryotic TrpRS. The primary sequences of TrpRS homologs from several basal eukaryotes including Giardia lack a set of three residues observed to stabilize interactions with this beta-hairpin in the human TrpRS. Thus the present structure suggests that the activation reaction mechanism of TrpRS from the basal eukaryote G. lamblia differs from that of higher eukaryotes. Furthermore, the protein as observed in the crystal forms an (alpha(2))(2) homotetramer. The canonical dimer interface observed in all previous structures of tryptophanyl-tRNA synthetases is maintained, but in addition each N-terminal alpha-helix reciprocally interlocks with the equivalent helix from a second dimer to form a dimer of dimers. Although we have no evidence for tetramer formation in vivo, modeling indicates that the crystallographically observed tetrameric structure would be compatible with the tRNA binding mode used by dimeric TrpRS and TyrRS.


Asunto(s)
Giardia lamblia/enzimología , Triptófano-ARNt Ligasa/química , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Difracción de Rayos X
20.
Nat Struct Mol Biol ; 17(5): 602-7, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20436472

RESUMEN

New drugs are needed to treat toxoplasmosis. Toxoplasma gondii calcium-dependent protein kinases (TgCDPKs) are attractive targets because they are absent in mammals. We show that TgCDPK1 is inhibited by low nanomolar levels of bumped kinase inhibitors (BKIs), compounds inactive against mammalian kinases. Cocrystal structures of TgCDPK1 with BKIs confirm that the structural basis for selectivity is due to the unique glycine gatekeeper residue in the ATP-binding site. We show that BKIs interfere with an early step in T. gondii infection of human cells in culture. Furthermore, we show that TgCDPK1 is the in vivo target of BKIs because T. gondii expressing a glycine to methionine gatekeeper mutant enzyme show significantly decreased sensitivity to BKIs. Thus, design of selective TgCDPK1 inhibitors with low host toxicity may be achievable.


Asunto(s)
Antiparasitarios/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Antiparasitarios/química , Cristalografía por Rayos X , Fibroblastos/parasitología , Interacciones Huésped-Parásitos/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/análisis , Toxoplasma/citología , Toxoplasma/efectos de los fármacos , Toxoplasma/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA