RESUMEN
KEY MESSAGE: Integrative omics approaches revealed a crosstalk among phytohormones during tuberous root development in cassava. Tuberous root formation is a complex process consisting of phase changes as well as cell division and elongation for radial growth. We performed an integrated analysis to clarify the relationships among metabolites, phytohormones, and gene transcription during tuberous root formation in cassava (Manihot esculenta Crantz). We also confirmed the effects of the auxin (AUX), cytokinin (CK), abscisic acid (ABA), jasmonic acid (JA), gibberellin (GA), brassinosteroid (BR), salicylic acid, and indole-3-acetic acid conjugated with aspartic acid on tuberous root development. An integrated analysis of metabolites and gene expression indicated the expression levels of several genes encoding enzymes involved in starch biosynthesis and sucrose metabolism are up-regulated during tuberous root development, which is consistent with the accumulation of starch, sugar phosphates, and nucleotides. An integrated analysis of phytohormones and gene transcripts revealed a relationship among AUX signaling, CK signaling, and BR signaling, with AUX, CK, and BR inducing tuberous root development. In contrast, ABA and JA inhibited tuberous root development. These phenomena might represent the differences between stem tubers (e.g., potato) and root tubers (e.g., cassava). On the basis of these results, a phytohormonal regulatory model for tuberous root development was constructed. This model may be useful for future phytohormonal studies involving cassava.
Asunto(s)
Manihot , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Manihot/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Almidón/metabolismoRESUMEN
Cassava (Manihot esculenta Crantz.) is an important economic crop in tropical countries. Demands for using cassava in food, feed and biofuel industries have been increasing worldwide. Cassava anthracnose disease, caused by Colletotrichum gloeosporioides f.sp. manihotis (CAD), is considered a major problem in cassava production. To minimize the effects of such disease, this study investigated the response of cassava to attack by CAD and how the plants defend themselves against this threat. Genome-wide identification of antimicrobial peptide genes (AMPs) and their expression in response to fungal infection was performed in the resistant cassava cultivar (Huay Bong 60; HB60) in comparison with the highly susceptible cultivar (Hanatee; HN). A total of 114 gene members of AMP were identified in the cassava genome database. Fifty-six gene members were selected for phylogenetic tree construction and analysis of putative cis-acting elements in their promoter regions. Differential expression profiles of six candidate genes were observed in response to CAD infection of both cassava cultivars. Upregulation of snakins, MeSN1 and MeSN2 was found in HB60, whereas MeHEL, Me-AMP-D2 and MeLTP2 were highly induced in HN. The MeLTP1 gene was not expressed in either cultivar. HB60 showed a reduced severity rating in comparison to HN after CAD infection. The biomembrane permeability test of fungal CAD was strongly affected after treatment with protein extract derived from CAD-infected HB60. Altogether, these findings suggest that snakins have a potential function in the CAD defense response in cassava. These results could be useful for cassava improvement programs to fight fungal pathogen.
Asunto(s)
Resistencia a la Enfermedad , Manihot/genética , Proteínas de Plantas/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Colletotrichum/patogenicidad , Manihot/microbiología , Proteínas de Plantas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismoRESUMEN
During growth of woody plant-trunk, the secondary meristem functions in giving rise the xylem and phloem. Rubber tree (Hevea brasiliensis Muell. Arg.), in addition, contains laticifers (latex producing vessels) in the vicinity of phloem. Insights into regulatory mechanisms of gene networks underlying laticifer proliferation in rubber tree has remained very limited. The candidate vascular development-related genes were selected to investigate for expression profile in phloem and xylem tissues of high latex yield- and high wood yield-clones of rubber tree. The differential gene expression between the mature branch-xylem and -phloem tissues was clearly observed. The cis-regulatory motif analysis revealed the existent of putative jasmonic acid (JA)- and brassinosteroid (BR)-responsive regulatory motifs in promoter regions of these genes, and consequently the effect of exogenous application of JA, BR or their respective signaling inhibitors, on the formation of laticifers in rubber tree was demonstrated. Interestingly, the laticifer numbers were significantly increased in JA-treatment, correlated with up-regulation of phloem development-related genes in both rubber tree clones. On the contrary, the laticifers were decreased in BR-treatment accompanying by up-regulation of xylem development-related genes, especially in high wood yield-rubber tree clone. BR-inhibitor treatment also enhanced laticifer numbers, while JA-inhibitor suppressed laticifer differentiation. Taken together, this study unveils the molecular interplay between JA/BR on vascular development in rubber tree and how this impacts the appearance of laticifers in this plant. This process is vital for a better understanding on laticifer differentiation and its impact in the manipulation of wood and latex yield in rubber tree improvement program.
RESUMEN
Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or MeJA could elevate the defense response in both cultivars of cassava. This finding should pave the way for management to reduce yield loss from disease and genetic improvement in cassava.
Asunto(s)
Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Manihot , Fitocromo/farmacología , Enfermedades de las Plantas/microbiología , Transcripción Genética/efectos de los fármacos , Xanthomonas axonopodis/crecimiento & desarrollo , Manihot/metabolismo , Manihot/microbiologíaRESUMEN
Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed.
Asunto(s)
Acuaporinas , Estudio de Asociación del Genoma Completo , Manihot , Proteínas de Plantas , Estrés Fisiológico , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Cassava anthracnose disease (CAD), caused by the fungus Colletotrichum gloeosporioides f. sp. Manihotis, is a serious disease of cassava (Manihot esculenta) worldwide. In this study, we established a cassava oligonucleotide-DNA microarray representing 59,079 probes corresponding to approximately 30,000 genes based on original expressed sequence tags and RNA-seq information from cassava, and applied it to investigate the molecular mechanisms of resistance to fungal infection using two cassava cultivars, Huay Bong 60 (HB60, resistant to CAD) and Hanatee (HN, sensitive to CAD). Based on quantitative real-time reverse transcription PCR and expression profiling by the microarray, we showed that the expressions of various plant defense-related genes, such as pathogenesis-related (PR) genes, cell wall-related genes, detoxification enzyme, genes related to the response to bacterium, mitogen-activated protein kinase (MAPK), genes related to salicylic acid, jasmonic acid and ethylene pathways were higher in HB60 compared with HN. Our results indicated that the induction of PR genes in HB60 by fungal infection and the higher expressions of defense response-related genes in HB60 compared with HN are likely responsible for the fungal resistance in HB60. We also showed that the use of our cassava oligo microarray could improve our understanding of cassava molecular mechanisms related to environmental responses and development, and advance the molecular breeding of useful cassava plants.
Asunto(s)
Colletotrichum/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Manihot/genética , Manihot/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Ontología de Genes , Genes de Plantas , Oxilipinas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ácido Salicílico/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba/genéticaRESUMEN
Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manihot/genética , Proteínas de Plantas/genética , Proteoma , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Manihot/anatomía & histología , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem , TranscriptomaRESUMEN
Cassava (Manihot esculenta Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits. The effectiveness of histone deacetylase (HDAC) inhibitors for increasing tolerance to salinity stress has recently been reported. Here we use the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), to enhance tolerance to high salinity in cassava. Immunoblotting analysis reveals that SAHA treatment induces strong hyper-acetylation of histones H3 and H4 in roots, suggesting that SAHA functions as the HDAC inhibitor in cassava. Consistent with increased tolerance to salt stress under SAHA treatment, reduced Na+ content and increased K+/Na+ ratio were detected in SAHA-treated plants. Transcriptome analysis to discover mechanisms underlying salinity stress tolerance mediated through SAHA treatment reveals that SAHA enhances the expression of 421 genes in roots under normal condition, and 745 genes at 2 h and 268 genes at 24 h under both SAHA and NaCl treatment. The mRNA expression of genes, involved in phytohormone [abscisic acid (ABA), jasmonic acid (JA), ethylene, and gibberellin] biosynthesis pathways, is up-regulated after high salinity treatment in SAHA-pretreated roots. Among them, an allene oxide cyclase (MeAOC4) involved in a crucial step of JA biosynthesis is strongly up-regulated by SAHA treatment under salinity stress conditions, implying that JA pathway might contribute to increasing salinity tolerance by SAHA treatment. Our results suggest that epigenetic manipulation might enhance tolerance to high salinity stress in cassava.
RESUMEN
Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change.
Asunto(s)
Aclimatación/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Manihot/fisiología , Proteínas de Plantas/genética , Clima , Perfilación de la Expresión Génica , Manihot/genética , Manihot/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas , Estaciones del Año , Transducción de Señal , Estrés Fisiológico , Agua/metabolismoRESUMEN
Development of storage roots is a process associated with a phase change from cell division and elongation to radial growth and accumulation of massive amounts of reserve substances such as starch. Knowledge of the regulation of cassava storage root formation has accumulated over time; however, gene regulation during the initiation and early stage of storage root development is still poorly understood. In this study, transcription profiling of fibrous, intermediate and storage roots at eight weeks old were investigated using a 60-mer-oligo microarray. Transcription and gene expression were found to be the key regulating processes during the transition stage from fibrous to intermediate roots, while homeostasis and signal transduction influenced regulation from intermediate roots to storage roots. Clustering analysis of significant genes and transcription factors (TF) indicated that a number of phytohormone-related TF were differentially expressed; therefore, phytohormone-related genes were assembled into a network of correlative nodes. We propose a model showing the relationship between KNOX1 and phytohormones during storage root initiation. Exogeneous treatment of phytohormones N (6) -benzylaminopurine and 1-Naphthaleneacetic acid were used to induce the storage root initiation stage and to investigate expression patterns of the genes involved in storage root initiation. The results support the hypothesis that phytohormones are acting in concert to regulate the onset of cassava storage root development. Moreover, MeAGL20 is a factor that might play an important role at the onset of storage root initiation when the root tip becomes swollen.
Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Genoma de Planta/fisiología , Manihot/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Citocininas/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de SeñalRESUMEN
Cassava is a starchy root crop for food and industrial applications in many countries around the world. Among the factors that affect cassava production, diseases remain the major cause of yield loss. Cassava anthracnose disease is caused by the fungus Colletotrichum gloeosporioides. Severe anthracnose attacks can cause tip die-backs and stem cankers, which can affect the availability of planting materials especially in large-scale production systems. Recent studies indicate that plants over- or under-express certain microRNAs (miRNAs) to cope with various stresses. Understanding how a disease-resistant plant protects itself from pathogens should help to uncover the role of miRNAs in the plant immune system. In this study, the disease severity assay revealed different response to C. gloeosporioides infection in two cassava cultivars. Quantitative RT-PCR analysis uncovered the differential expression of the two miRNAs and their target genes in the two cassava cultivars that were subjected to fungal infection. The more resistant cultivar revealed the up-regulation of miR160 and miR393, and consequently led to low transcript levels in their targets, ARF10 and TIR1, respectively. The more susceptible cultivar exhibited the opposite pattern. The cis-regulatory elements relevant to defense and stress responsiveness, fungal elicitor responsiveness and hormonal responses were the most prevalent present in the miRNAs gene promoter regions. The possible dual role of these specific miRNAs and their target genes associated with cassava responses to C. gloeosporioides is discussed. This is the first study to address the molecular events by which miRNAs which might play a role in fungal-infected cassava. A better understanding of the functions of miRNAs target genes should greatly increase our knowledge of the mechanism underlying susceptibility and lead to new strategies to enhance disease tolerance in this economically important crop.
Asunto(s)
Colletotrichum/fisiología , Manihot/genética , Manihot/microbiología , MicroARNs/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Bioensayo , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Hojas de la Planta/metabolismo , Tallos de la Planta/microbiología , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
The rubber tree is an economically important plant that produces natural rubber for various industrial uses. The application of ethylene contributes to increased latex production in rubber trees; however, the molecular biology behind the effects of ethylene on latex yield remains to be elucidated. Recently, the intersection between microRNA (miRNA) regulation and phytohormone responses has been revealed. Insight into the regulation of miRNAs and their target genes should help to determine the functional importance of miRNAs as well as the role of miRNAs in signaling under ethylene stimulation in the rubber tree. In this study, hbr-miR159 and hbr-miR166 were down-regulated in bark under ethylene treatment. The ethylene also down-regulated ATHB15-like (Class III Homeodomain Leucine Zipper, HD-ZIP III) which have been extensively implicated in the regulation of primary and secondary vascular tissue pattern formation. The strong negative-regulation of ARF6/ARF8 caused by hbr-miR167 involved in an attenuation of vascular development and may gradually lead to bark dryness syndrome in the long term ethylene treatment. The negative correlation of hbr-miR172 and its target REF3 in the inner soft bark under ethylene treatment results in dramatic increases in latex yield in the ethylene-sensitive clone of the rubber tree. The overall results suggested that the differential expression of HD-ZIP III, miR167/ARF6, ARF8, and miR172/REF3 and related genes may play possible roles in the response to ethylene treatment, resulting in longer latex flow and increased latex yield.
Asunto(s)
Etilenos/farmacología , Hevea/efectos de los fármacos , Hevea/metabolismo , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Hevea/genéticaRESUMEN
Trunk phloem necrosis (TPN), a physiological bark disorder of the rubber tree (Hevea brasiliensis), is a serious problem that affects the yield of natural rubber. The resultant bark dryness occurs in up to half of a plantation's trees in almost every rubber tree plantation region, causing a great annual loss of dry rubber for natural rubber production. Different types of injury and physical damage caused by mechanical activation as well as environmental stresses cause physiological bark disorder in tree. Due to the essential role of miR166, miR393 and miR167 in vascular development and abiotic stress response in diverse plant species, it was interesting to investigate the role of these miRNAs in rubber trees, particularly during development of a physiological bark disorder. In this study, the expression pattern of miR166, miR393 and miR167; and their target genes, HD-ZIP III; TIR1 and ARF8, respectively; was demonstrated in healthy tree and different TPN trees. Their existence and function in vivo was validated using RNA ligase-mediated 5' rapid amplification of cDNA ends. Taken together, the results suggest a possible dual role of these three miRNAs in maintaining normal bark regeneration in healthy trees, coping with overtapping by affecting the wound healing system leading to abnormal bark regeneration in overtapped-TPN trees, and act as additional forces that enhance the attenuation of vascular development resulting in bark necrosis and cell death in the natural-TPN tree. This is the first study to address the molecular events of miRNAs involved in the physiological bark disorder TPN in rubber tree. Further study will open the possibility to better understanding of physiological and molecular perspectives during TPN development, and lead to improvement of monitoring the exploitation of rubber tree plantations.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hevea/genética , MicroARNs/genética , ADN Complementario/genética , Hevea/fisiología , Látex/metabolismo , Floema/genética , Floema/fisiología , Corteza de la Planta/genética , Corteza de la Planta/fisiología , ARN de Planta/genética , Estrés FisiológicoRESUMEN
The para rubber tree is the most widely cultivated tree species for producing natural rubber (NR) latex. Unfortunately, rubber tree characteristics such as a long life cycle, heterozygous genetic backgrounds, and poorly understood genetic profiles are the obstacles to breeding new rubber tree varieties, such as those with improved NR yields. Recent evidence has revealed the potential importance of controlling microRNA (miRNA) decay in some aspects of NR regulation. To gain a better understanding of miRNAs and their relationship with rubber tree gene regulation networks, large genomic DNA insert-containing libraries were generated to complement the incomplete draft genome sequence and applied as a new powerful tool to predict a function of interested genes. Bacterial artificial chromosome and fosmid libraries, containing a total of 120,576 clones with an average insert size of 43.35 kb, provided approximately 2.42 haploid genome equivalents of coverage based on the estimated 2.15 gb rubber tree genome. Based on these library sequences, the precursors of 1 member of rubber tree-specific miRNAs and 12 members of conserved miRNAs were successfully identified. A panel of miRNAs was characterized for phytohormone response by precisely identifying phytohormone-responsive motifs in their promoter sequences. Furthermore, the quantitative real-time PCR on ethylene stimulation of rubber trees was performed to demonstrate that the miR2118, miR159, miR164 and miR166 are responsive to ethylene, thus confirmed the prediction by genomic DNA analysis. The cis-regulatory elements identified in the promoter regions of these miRNA genes help augment our understanding of miRNA gene regulation and provide a foundation for further investigation of the regulation of rubber tree miRNAs.
Asunto(s)
Hevea/genética , MicroARNs/genética , Reguladores del Crecimiento de las Plantas/fisiología , ARN de Planta/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genoma de Planta , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , TranscriptomaRESUMEN
MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manihot/genética , MicroARNs/genética , MicroARNs/aislamiento & purificación , ARN de Planta/aislamiento & purificación , Secuencia de Bases , Biología Computacional , Bases de Datos Genéticas , Sequías , Redes Reguladoras de Genes , Datos de Secuencia Molecular , Familia de Multigenes , Regiones Promotoras Genéticas , ARN sin Sentido/genética , ARN de Planta/genética , Programas Informáticos , Estrés Fisiológico , Transcripción GenéticaRESUMEN
White spot syndrome virus is currently the leading cause of production losses in the shrimp industry. Penaeus monodon Rab7 protein has been recognized as a viral-binding protein with an efficient protective effect against white spot syndrome infection. Plant-derived recombinant PmRab7 might serve as an alternative source for in-feed vaccination, considering the remarkable abilities of plant expression systems. PmRab7 was introduced into the Arabidopsis thaliana T87 genome. Arabidopsis-derived recombinant PmRab7 showed high binding activity against white spot syndrome virus and a viral envelope, VP28. The growth profile of Arabidopsis suspension culture expressing PmRab7 (ECR21# 35) resembled that of its counterpart. PmRab7 expression in ECR21# 35 reached its maximum level at 5 mg g(-1) dry weight in 12 days, which was higher than those previously reported in Escherichia coli and in Pichia. Co-injection of white spot syndrome virus and Arabidopsis crude extract containing PmRab7 in Litopenaeus vannamei showed an 87% increase in shrimp survival rate at 5 day after injection. In this study, we propose an alternative PmRab7 source with higher production yield, and cheaper culture media costs, that might serve the industry's need for an in-feed supplement against white spot syndrome infection.
Asunto(s)
Arabidopsis/metabolismo , Penaeidae/virología , Proteínas Recombinantes/biosíntesis , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Proteínas de Unión al GTP rab/biosíntesis , Proteínas de Unión al GTP rab/metabolismo , Análisis de Varianza , Animales , Acuicultura/métodos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Reactores Biológicos , Northern Blotting , Southern Blotting , Western Blotting , Cartilla de ADN/genética , Suplementos Dietéticos , Ensayo de Inmunoadsorción Enzimática , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Pruebas de Neutralización , Penaeidae/inmunología , Tasa de Supervivencia , Virus del Síndrome de la Mancha Blanca 1/inmunología , Proteínas de Unión a GTP rab7RESUMEN
MicroRNAs (miRNAs) are short RNAs with essential roles in gene regulation in various organisms including higher plants. In contrast to the vast information on miRNAs from many economically important plants, almost nothing has been reported on the identification or analysis of miRNAs from rubber tree (Hevea brasiliensis L.), the most important natural rubber-producing crop. To identify miRNAs and their target genes in rubber tree, high-throughput sequencing combined with a computational approach was performed. Four small RNA libraries were constructed for deep sequencing from mature and young leaves of two rubber tree clones, PB 260 and PB 217, which provide high and low latex yield, respectively. 115 miRNAs belonging to 56 known miRNA families were identified, and northern hybridization validated miRNA expression and revealed developmental stage-dependent and clone-specific expression for some miRNAs. We took advantage of the newly released rubber tree genome assembly and predicted 20 novel miRNAs. Further, computational analysis uncovered potential targets of the known and novel miRNAs. Predicted target genes included not only transcription factors but also genes involved in various biological processes including stress responses, primary and secondary metabolism, and signal transduction. In particular, genes with roles in rubber biosynthesis are predicted targets of miRNAs. This study provides a basic catalog of miRNAs and their targets in rubber tree to facilitate future improvement and exploitation of rubber tree.
Asunto(s)
Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Hevea/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Quitinasas/genética , Quitinasas/metabolismo , Biblioteca de Genes , Hevea/metabolismo , MicroARNs/aislamiento & purificación , MicroARNs/metabolismo , Muramidasa/genética , Muramidasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARNRESUMEN
Salinity stress is one of the most common abiotic stresses that hamper plant productivity worldwide. Successful plant adaptations to salt stress require substantial changes in cellular protein expression. In this work, we present a 2-DE-based proteomic analysis of a model unicellular green alga, Chlamydomonas reinhardtii, subjected to 300 mM NaCl for 2 h. Results showed that, in addition to the protein spots that showed partial up- or down-regulation patterns, a number of proteins were exclusively present in the proteome of the control cells, but were absent from the salinity-stressed samples. Conversely, a large number of proteins exclusively appeared in the proteome of the salinity-stressed samples. Of those exclusive proteins, we could successfully identify, via LC-MS/MS, 18 spots uniquely present in the control cells and 99 spots specific to NaCl-treated cells. Interestingly, among the salt-exclusive protein spots, we identified several important housekeeping proteins like molecular chaperones and proteins of the translation machinery, suggesting that they may originate from post-translational modifications rather than from de novo biosynthesis. The possible role and the salt-specific modification of these proteins by salinity stress are discussed.
Asunto(s)
Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/metabolismo , Proteómica/métodos , Cloruro de Sodio/farmacología , Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , Espectrometría de Masas en TándemRESUMEN
Chromatin reconstitution after DNA replication and repair is essential for the inheritance of epigenetic information, but mechanisms underlying such a process are still poorly understood. Previously, we proposed that Arabidopsis BRU1 functions to ensure the chromatin reconstitution. Loss-of-function mutants of BRU1 are hypersensitive to genotoxic stresses and cause release of transcriptional gene silencing of heterochromatic genes. In this study, we show that BRU1 also plays roles in gene regulation in euchromatic regions. bru1 mutations caused sporadic ectopic expression of genes, including those that encode master regulators of developmental programs such as stem cell maintenance and embryogenesis. bru1 mutants exhibited adventitious organogenesis, probably due to the misexpression of such developmental regulators. The key regulatory genes misregulated in bru1 alleles were often targets of PcG SET-domain proteins, although the overlap between the bru1-misregulated and PcG SET-domain-regulated genes was limited at a genome-wide level. Surprisingly, a considerable fraction of the genes activated in bru1 were located in several subchromosomal regions ranging from 174 to 944 kb in size. Our results suggest that BRU1 has a function related to the stability of subchromosomal gene regulation in the euchromatic regions, in addition to the maintenance of chromatin states coupled with heritable epigenetic marks.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación/genética , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Proteínas del Grupo Polycomb , Proteínas Represoras/metabolismo , Factores de Transcripción/genéticaRESUMEN
Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.