Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biochimie ; 210: 22-34, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36627041

RESUMEN

Couch's spadefoot toad (Scaphiopus couchii) spends most of the year underground in a hypometabolic state known as estivation. During this time, they overcome significant dehydration and lack of food through many mechanisms including employing metabolic rate depression (MRD), increasing urea concentration, switching to lipid oxidation as the primary energy source, and decreasing their breathing and heart rate. MicroRNA (miRNA) are known to regulate translation by targeting messenger RNA (mRNA) for degradation or temporary storage, with several studies having reported that miRNA is differentially expressed during MRD, including estivation. Thus, we hypothesized that miRNA would be involved in gene regulation during estivation in S. couchii heart. Next-generation sequencing and bioinformatic analyses were used to assess changes in miRNA expression in response to two-month estivation and to predict the downstream effects of this expression. KEGG and GO analyses indicated that ribosome and cardiac muscle contraction are among the pathways predicted to be upregulated, whereas cell signaling and fatty acid metabolism were predicted to be downregulated. Together these results suggest that miRNAs contribute to the regulation of gene expression related to cardiac muscle physiology and energy metabolism during estivation.


Asunto(s)
Estivación , MicroARNs , Animales , Estivación/fisiología , Anuros/genética , MicroARNs/genética
2.
Integr Comp Biol ; 60(5): 1036-1057, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32717080

RESUMEN

Insects have a diversity of hearing organs known to function in a variety of contexts, including reproduction, locating food, and defense. While the role of hearing in predator avoidance has been extensively researched over the past several decades, this research has focused on the detection of one type of predator-echolocating bats. Here we reassess the role of hearing in antipredator defense by considering how insects use their ears to detect and avoid the wide range of predators that consume them. To identify the types of sounds that could be relevant to insect prey, we first review the topic of hearing-mediated predator avoidance in vertebrates. Sounds used by vertebrate prey to assess predation risk include incidental sound cues (e.g., flight sounds, rustling vegetation, and splashing) produced by an approaching predator or another escaping prey, as well as communication signals produced by a predator (e.g., echolocation calls, songs) or nonpredator (e.g., alarm calls). We then review what is known, and what is not known, about such sounds made by the main predators and parasitoids of insects (i.e., birds, bats, terrestrial vertebrates, and invertebrates) and how insects respond to them. Three key insights emerged from our review. First, there is a lack of information on how both vertebrate and insect prey use passive sound cues produced by predators to avoid being captured. Second, while there are numerous examples of vertebrate prey eavesdropping on the calls and songs of predators and nonpredators to assess risk, there are currently no such examples for eared insect prey. Third, the hearing sensitivity of many insects, including those with ears considered to be dedicated to detecting bats or mates, overlaps with both sound cues and signals generated by nonbat predators. Sounds of particular relevance to insect prey include the flight sounds and calls of insectivorous birds, the flight sounds of insect predators and parasitoids, and rustling vegetation sounds of birds and terrestrial predators. We conclude that research on the role of insect hearing in predator avoidance has been disproportionally focused on bat-detection, and that acoustically-mediated responses to other predators may have been overlooked because the responses of prey may be subtle (e.g., ceasing activity, increasing vigilance). We recommend that researchers expand their testing of hearing-mediated risk assessment in insects by considering the wide range of sounds generated by predators, and the varied responses exhibited by prey to these sounds.


Asunto(s)
Quirópteros , Audición , Insectos , Animales , Conducta Predatoria , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA