Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(5): ziae037, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38590756

RESUMEN

Bone mineral density (BMD) loss in people living with HIV occurs with the initiation of combined antiretroviral therapy (cART), particularly with tenofovir disoproxil fumarate (TDF) containing cART. Switching from TDF to abacavir (ABC) or dolutegravir (DTG) leads to increased BMD. Whether BMD gains are due to cessation of TDF or anabolic effects of ABC or DTG is unclear. We investigated the effects of ABC and DTG on osteoblast lineage cells in vitro and in vivo. Primary human osteoblasts and male C57BL/6 mice were treated with individual antiretrovirals (ARVs) or a combination of ABC/DTG/lamivudine (3TC). Nearly all ARVs and cART inhibited osteogenic activity in vitro. Due to the importance of Wnt/ß-catenin in bone formation, we further investigated ARV effects on the Wnt/ß-catenin pathway. ABC, alone and as part of ABC/DTG/3TC, increased osteoblastic ß-catenin activity as indicated by increased TOPFlash activity, hypo-phosphorylated (active) ß-catenin staining, and ß-catenin targeted gene expression. Mice treated with TDF had decreased lumbar spine BMD and trabecular connectivity density in the vertebrae, while those treated with ABC/DTG/3TC reduced cortical area and thickness in the femur. Mice treated with ABC alone had no bone structural changes, increased circulating levels of the bone formation marker, P1NP, and elevated expression of the Wnt/ß-catenin target gene, Lef1, in osteocyte enriched samples. Further, bones from ARV-treated mice were isolated to evaluate ARV distribution. All ARVs were detected in the bone tissue, which was inclusive of bone marrow, but when bone marrow was removed, only TDF, ABC, and DTG were detected at ~0.1% of the circulating levels. Overall, our findings demonstrate that ABC activates Wnt/ß-catenin signaling, but whether this leads to increased bone formation requires further study. Assessing the impact of ARVs on bone is critical to informing ARV selection and/or discovery of regimens that do not negatively impact the skeleton.

2.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830571

RESUMEN

Human inducible pluripotent stem cell (hiPSC)-derived astrocytes (iAs) are critical to study astrocytes in health and disease. They provide several advantages over human fetal astrocytes in research, which include consistency, availability, disease modeling, customization, and ethical considerations. The generation of iAs is hampered by the requirement of Matrigel matrix coating for survival and proliferation. We provide a protocol demonstrating that human iAs cultured in the absence of Matrigel are viable and proliferative. Further, through a side-by-side comparison of cultures with and without Matrigel, we show significant similarities in astrocyte-specific profiling, including morphology (shape and structure), phenotype (cell-specific markers), genotype (transcriptional expression), metabolic (respiration), and functional aspects (glutamate uptake and cytokine response). In addition, we report that, unlike other CNS cell types, such as neuronal progenitor cells and neurons, iAs can withstand the absence of Matrigel coating. Our study demonstrates that Matrigel is dispensable for the culture of human iPSC-derived astrocytes, facilitating an easy, streamlined, and cost-effective method of generating these cells.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Humanos , Células Cultivadas , Astrocitos/metabolismo , Diferenciación Celular/genética , Análisis Costo-Beneficio , Células Madre Pluripotentes Inducidas/metabolismo
3.
Cells ; 12(7)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37048107

RESUMEN

HIV anti-retrovirals (ARVs) have vastly improved the life expectancy of people living with HIV (PLWH). However, toxic effects attributed to long-term ARV use also contribute to HIV-related co-morbidities such as heart disease, bone loss and HIV-associated neurocognitive disorders (HAND). Unfortunately, mouse models used to study the effects of ARVs on viral suppression, toxicity and HIV latency/tissue reservoirs have not been widely established. Here, we demonstrate an effective mouse model utilizing immune-compromised mice, reconstituted with infected human peripheral blood mononuclear cell (PBMCs). ARVs areincorporated into mouse chow and administered daily with combination ARV regimens includingAtripla (efavirenz, tenofovir disoproxil fumarate, and emtricitabine) and Triumeq (abacavir, dolutegravir and lamivudine). This model measures HIV-infected human cell trafficking, and ARV penetration throughout most relevant HIV organs and plasma, with a large amount of trafficking to the secondary lymphoid organs. Furthermore, the HIV viral load within each organ and the plasma was reduced in ARV treated vs. untreated control. Overall, we have demonstrated a mouse model that is relatively easy and affordable to establish and utilize to study ARVs' effect on various tissues, including the co-morbid conditions associated with PLWH, such as HAND, and other toxic effects.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , Animales , Ratones , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Leucocitos Mononucleares , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Lamivudine/farmacología , Lamivudine/uso terapéutico
4.
J Virol ; 96(15): e0080422, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852355

RESUMEN

CD4dim CD8bright T cells are a mature population of CD8+ T cells that upon activation upregulate CD4 dimly on their surface. Expression of CD4 on these cells suggests that they can be an additional source of HIV neuroinvasion and persistence in the brain. We used HIV-infected NOD/SCID/IL-2rcγ-/- (NSG) humanized mice to track CD4dim CD8bright T cell homing to the brain and define their role in HIV dissemination into the brain. We report here that CD4dim CD8bright T cells are found in the brain at a median frequency of 2.6% and in the spleen at median frequency of 7.6% of CD3+ T cells. In the brain, 10 to 20% of CD4dim CD8bright T cells contain integrated provirus, which is infectious as demonstrated by viral outgrowth assay. CD4dim CD8bright T cells in the brain exhibited significantly higher expression of the brain homing receptors CX3CR1 and CXCR3 in comparison to their single-positive CD8+ T cell counterpart. Blocking lymphocyte trafficking into the brain of humanized mice via anti-VLA4 and anti-LFA1 antibodies reduced CD4dim CD8bright T cell trafficking into the brain by 60% and diminished brain HIV proviral DNA by 72%. Collectively, our findings demonstrate that CD4dim CD8bright T cells can home to the brain and support productive HIV replication. These studies also reveal for the first time that CD4dim CD8bright T cells are capable of HIV neuroinvasion and are a reservoir for HIV. IMPORTANCE We report here a seminal finding of a novel population of T cells, termed CD4dim CD8bright T cells, that plays a role in HIV neuroinvasion and is a reservoir for HIV in the brain.


Asunto(s)
Encéfalo , Antígenos CD4 , Antígenos CD8 , Linfocitos T CD8-positivos , Movimiento Celular , Infecciones por VIH , VIH-1 , Tropismo Viral , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Ratones , Ratones Endogámicos NOD , Ratones SCID , Provirus/genética , Provirus/aislamiento & purificación , Receptores CXCR3/metabolismo , Receptores Mensajeros de Linfocitos/metabolismo
5.
Viruses ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35891449

RESUMEN

HIV infection mediates the apoptosis of lymphocytes, the mechanism of which is multifaceted. Here, we evaluated the role of Wnt/ß-catenin signaling in HIV-associated T cell apoptosis, as Wnt/ß-catenin regulates the transcriptional activity of genes impacting apoptosis. We specifically investigated the role of the Wnt/ß-catenin pathway in the HIV-associated apoptosis of CD4+ T cells and CD4dimCD8bright T cells, a population that is infected by HIV. We found that the induction of ß-catenin, via a 6-bromoindirubin-3-oxime (BIO), significantly rescued HIV-infected CD4+ and CD4dimCD8bright T cells from apoptosis by >40−50%. Further, a small-molecule inhibitor of the Wnt/ß-catenin pathway (PNU-74654) reversed BIO-mediated protection from HIV-associated apoptosis. BIO also induced Bcl-xL, an anti-apoptotic protein, and a target gene of Wnt/ß-catenin, in CD4+ and CD4dimCD8bright T cells by approximately 3-fold. Inhibiting Bcl-xL by WEHI-539 abrogated ß-catenin-mediated apoptotic protection in infected CD4+ and CD4dimCD8bright T cells. Collectively, these findings demonstrate that engaging Wnt/ß-catenin signaling in HIV-infected T cells protects them from HIV-associated apoptosis by inducing Bcl-xL.


Asunto(s)
Infecciones por VIH , beta Catenina , Apoptosis , Linfocitos T CD4-Positivos/metabolismo , Humanos , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismo
6.
PLoS Pathog ; 18(3): e1010354, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35255110

RESUMEN

Latency is the main obstacle towards an HIV cure, with cure strategies aiming to either elicit or prevent viral reactivation. While these strategies have shown promise, they have only succeeded in modulating latency in a fraction of the latent HIV reservoir, suggesting that the mechanisms controlling HIV latency are not completely understood, and that comprehensive latency modulation will require targeting of multiple latency maintenance pathways. We show here that the transcriptional co-activator and the central mediator of canonical Wnt signaling, ß-catenin, inhibits HIV transcription in CD4+ T cells via TCF-4 LTR binding sites. Further, we show that inhibiting the ß-catenin pathway reactivates HIV in a primary TCM cell model of HIV latency, primary cells from cART-controlled HIV donors, and in CD4+ latent cell lines. ß-catenin inhibition or activation also enhanced or inhibited the activity of several classes of HIV latency reversing agents, respectively, in these models, with significant synergy of ß-catenin and each LRA class tested. In sum, we identify ß-catenin as a novel regulator of HIV latency in vitro and ex vivo, adding new therapeutic targets that may be combined for comprehensive HIV latency modulation in HIV cure efforts.


Asunto(s)
Infecciones por VIH , VIH-1 , beta Catenina , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Activación Viral , Latencia del Virus , beta Catenina/genética , beta Catenina/metabolismo
7.
Antimicrob Agents Chemother ; 66(4): e0194121, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35293780

RESUMEN

Combination antiretroviral therapy (cART) dramatically changed the face of the HIV/AIDS pandemic, making it one of the most prominent medical breakthroughs of the past 3 decades. However, as the life span of persons living with HIV (PLWH) continues to approach that of the general population, the same cannot be said regarding their quality of life. PLWH are affected by comorbid conditions such as high blood pressure, diabetes, and neurocognitive impairment at a higher rate and increased severity than their age-matched counterparts. PLWH also have higher levels of inflammation, the drivers of which are not entirely clear. As cART treatment is lifelong, we assessed here the effects of cART, independent of HIV, on primary human monocyte-derived macrophages (MDMs). MDMs were unskewed or skewed to an alternative phenotype and treated with Atripla or Triumeq, two first-line cART treatments. We report that Triumeq skewed alternative MDMs toward an inflammatory nonsenescent phenotype. Both Atripla and Triumeq caused mitochondrial dysfunction, specifically efavirenz and abacavir. Additionally, transcriptome sequencing (RNA-seq) demonstrated that both Atripla and Triumeq caused differential regulation of genes involved in immune regulation and cell cycle and DNA repair. Collectively, our data demonstrate that cART, independent of HIV, alters the MDM phenotype. This suggests that cART may contribute to cell dysregulation in PLWH that subsequently results in increased susceptibility to comorbidities.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Fármacos Anti-VIH/uso terapéutico , Combinación Efavirenz, Emtricitabina y Fumarato de Tenofovir Disoproxil/metabolismo , Combinación Efavirenz, Emtricitabina y Fumarato de Tenofovir Disoproxil/farmacología , Combinación Efavirenz, Emtricitabina y Fumarato de Tenofovir Disoproxil/uso terapéutico , Humanos , Macrófagos , Mitocondrias , Calidad de Vida
8.
J Virol ; 95(17): e0070521, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34260264

RESUMEN

The latest outbreak of Zika virus (ZIKV) in the Americas was associated with significant neurologic complications, including microcephaly of newborns. We evaluated mechanisms that regulate ZIKV entry into human fetal astrocytes (HFAs). Astrocytes are key players in maintaining brain homeostasis. We show that the central mediator of canonical Wnt signaling, ß-catenin, regulates Axl, a receptor for ZIKV infection of HFAs, at the transcriptional level. In turn, ZIKV inhibited ß-catenin, potentially as a mechanism to overcome its restriction of ZIKV internalization through regulation of Axl. This was evident with three ZIKV strains tested but not with a laboratory-adapted strain which has a large deletion in its envelope gene. Finally, we show that ß-catenin-mediated Axl-dependent internalization of ZIKV may be of increased importance for brain cells, as it regulated ZIKV infection of astrocytes and human brain microvascular cells but not kidney epithelial (Vero) cells. Collectively, our studies reveal a role for ß-catenin in ZIKV infection and highlight a dynamic interplay between ZIKV and ß-catenin to modulate ZIKV entry into susceptible target cells. IMPORTANCE ZIKV is an emerging pathogen with sporadic outbreaks throughout the world. The most recent outbreak in North America was associated with small brains (microcephaly) in newborns. We studied the mechanism(s) that may regulate ZIKV entry into astrocytes. Astrocytes are a critical resident brain cell population with diverse functions that maintain brain homeostasis, including neurogenesis and neuronal survival. We show that three ZIKV strains (and not a heavily laboratory-adapted strain with a large deletion in its envelope gene) require Axl for internalization. Most importantly, we show that ß-catenin, the central mediator of canonical Wnt signaling, negatively regulates Axl at the transcriptional level to prevent ZIKV internalization into human fetal astrocytes. To overcome this restriction, ZIKV downregulates ß-catenin to facilitate Axl expression. This highlights a dynamic host-virus interaction whereby ZIKV inhibits ß-catenin to promote its internalization into human fetal astrocytes through the induction of Axl.


Asunto(s)
Astrocitos/virología , Encéfalo/virología , Feto/virología , Replicación Viral , Infección por el Virus Zika/prevención & control , Virus Zika/fisiología , beta Catenina/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Chlorocebus aethiops , Feto/metabolismo , Humanos , Riñón/metabolismo , Riñón/virología , Células Vero , Internalización del Virus , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , beta Catenina/genética
9.
J Immunol ; 205(8): 2046-2055, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32887752

RESUMEN

CD8+ T cells do not rely solely on cytotoxic functions for significant HIV control. Moreover, the noncytotoxic CD8+ T cell antiviral response is a primary mediator of natural HIV control such as that seen in HIV elite controllers and long-term nonprogressors that does not require combined antiretroviral therapy. In this study, we investigated the biological factors contributing to the noncytotoxic control of HIV replication mediated by primary human CD8+ T cells. We report that canonical Wnt signaling inhibits HIV transcription in an MHC-independent, noncytotoxic manner and that mediators of this pathway correlate with HIV controller clinical status. We show that CD8+ T cells express all 19 Wnts and CD8+ T cell-conditioned medium (CM) induced canonical Wnt signaling in infected recipient cells while simultaneously inhibiting HIV transcription. Antagonizing canonical Wnt activity in CD8+ T cell CM resulted in increased HIV transcription in infected cells. Further, Wnt2b expression was upregulated in HIV controllers versus viremic patients, and in vitro depletion of Wnt2b and/or Wnt9b from CD8+ CM reversed HIV inhibitory activity. Finally, plasma concentration of Dkk-1, an antagonist of canonical Wnt signaling, was higher in viremic patients with lower CD4 counts. This study demonstrates that canonical Wnt signaling inhibits HIV and significantly correlates with HIV controller status.


Asunto(s)
Linfocitos T CD8-positivos , Regulación de la Expresión Génica/inmunología , Glicoproteínas , Infecciones por VIH , VIH-1 , Inmunidad Celular , Proteínas Wnt , Vía de Señalización Wnt/inmunología , Adulto , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Femenino , Glicoproteínas/sangre , Glicoproteínas/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Infecciones por VIH/patología , VIH-1/inmunología , VIH-1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Péptidos y Proteínas de Señalización Intercelular/inmunología , Masculino , Proteínas Wnt/sangre , Proteínas Wnt/inmunología
10.
Cytokine ; 136: 155252, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32818703

RESUMEN

Expression of cytokines/chemokines is tightly regulated at the transcription level. This is crucial in the central nervous system to maintain neuroimmune homeostasis. IL-8 a chemoattractant, which recruits neutrophils, T cells, and basophils into the brain in response to inflammation and/or injury is secreted predominantly by neurons, microglia, and astrocytes. Here, we investigated the mechanism by which astrocytes regulate IL-8 expression. We demonstrate that while ß-catenin negatively regulated IL-8 transcription, its canonical transcriptional partners, members of the TCF/LEF transcription factors (TCF1, TCF3, TCF4 and LEF1) and Activating transcription factor 2 (ATF2) positively regulated IL-8 transcription. We further identified a putative TCF/LEF binding site at -175nt close to the minimal transcription region on the IL-8 promoter, mutation of which caused a significant reduction in IL-8 promoter activity. Chromatin immunoprecipitation demonstrated binding of TCF1, TCF4, LEF1 and ATF2 on the IL-8 promoter suggesting that TCFs/LEF partner with ATF2 to induce IL-8 transcription. These findings demonstrate a novel role for ß-catenin in suppression of IL-8 expression and for TCFs/LEF/ATF2 in inducing IL-8. These findings reveal a unique mechanism by which astrocytes tightly regulate IL-8 expression.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Astrocitos/metabolismo , Regulación de la Expresión Génica , Interleucina-8/biosíntesis , Factores de Transcripción TCF/metabolismo , beta Catenina/metabolismo , Línea Celular Tumoral , Humanos
11.
Cell Commun Signal ; 18(1): 93, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32546183

RESUMEN

BACKGROUND: The Wnt/ß-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/ß-catenin signaling involves partnering of ß-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between ß-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. METHODS: We performed molecular loss and/or gain of function studies of ß-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between ß-catenin/TCFs/LEFs and IL-6 promoter activity. RESULTS: ß-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. ß-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of ß-catenin. CONCLUSION: IL-6 regulation in human astrocytes engages a discordant interaction between ß-catenin and TCF/LEF. These findings are intriguing given that no role for ß-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that ß-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract.


Asunto(s)
Astrocitos/metabolismo , Factores Nucleares del Hepatocito/metabolismo , Interleucina-6/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Astrocitos/citología , Línea Celular , Humanos
12.
PLoS Pathog ; 16(6): e1008381, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525948

RESUMEN

HIV invades the brain during acute infection. Yet, it is unknown whether long-lived infected brain cells release productive virus that can egress from the brain to re-seed peripheral organs. This understanding has significant implication for the brain as a reservoir for HIV and most importantly HIV interplay between the brain and peripheral organs. Given the sheer number of astrocytes in the human brain and their controversial role in HIV infection, we evaluated their infection in vivo and whether HIV infected astrocytes can support HIV egress to peripheral organs. We developed two novel models of chimeric human astrocyte/human peripheral blood mononuclear cells: NOD/scid-IL-2Rgc null (NSG) mice (huAstro/HuPBMCs) whereby we transplanted HIV (non-pseudotyped or VSVg-pseudotyped) infected or uninfected primary human fetal astrocytes (NHAs) or an astrocytoma cell line (U138MG) into the brain of neonate or adult NSG mice and reconstituted the animals with human peripheral blood mononuclear cells (PBMCs). We also transplanted uninfected astrocytes into the brain of NSG mice and reconstituted with infected PBMCs to mimic a biological infection course. As expected, the xenotransplanted astrocytes did not escape/migrate out of the brain and the blood brain barrier (BBB) was intact in this model. We demonstrate that astrocytes support HIV infection in vivo and egress to peripheral organs, at least in part, through trafficking of infected CD4+ T cells out of the brain. Astrocyte-derived HIV egress persists, albeit at low levels, under combination antiretroviral therapy (cART). Egressed HIV evolved with a pattern and rate typical of acute peripheral infection. Lastly, analysis of human cortical or hippocampal brain regions of donors under cART revealed that astrocytes harbor between 0.4-5.2% integrated HIV gag DNA and 2-7% are HIV gag mRNA positive. These studies establish a paradigm shift in the dynamic interaction between the brain and peripheral organs which can inform eradication of HIV reservoirs.


Asunto(s)
Astrocitos , Barrera Hematoencefálica , Infecciones por VIH , VIH-1/metabolismo , Hipocampo , Liberación del Virus , Animales , Antirretrovirales/farmacología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/virología , Línea Celular Tumoral , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/genética , Hipocampo/metabolismo , Hipocampo/patología , Hipocampo/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID
13.
Sci Rep ; 10(1): 7499, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372013

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 10(1): 4746, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179788

RESUMEN

Ginkgolic acids (GA) are alkylphenol constituents of the leaves and fruits of Ginkgo biloba. GA has shown pleiotropic effects in vitro, including: antitumor effects through inhibition of lipogenesis; decreased expression of invasion associated proteins through AMPK activation; and potential rescue of amyloid-ß (Aß) induced synaptic impairment. GA was also reported to have activity against Escherichia coli and Staphylococcus aureus. Several mechanisms for this activity have been suggested including: SUMOylation inhibition; blocking formation of the E1-SUMO intermediate; inhibition of fatty acid synthase; non-specific SIRT inhibition; and activation of protein phosphatase type-2C. Here we report that GA inhibits Herpes simplex virus type 1 (HSV-1) by inhibition of both fusion and viral protein synthesis. Additionally, we report that GA inhibits human cytomegalovirus (HCMV) genome replication and Zika virus (ZIKV) infection of normal human astrocytes (NHA). We show a broad spectrum of fusion inhibition by GA of all three classes of fusion proteins including HIV, Ebola virus (EBOV), influenza A virus (IAV) and Epstein Barr virus (EBV). In addition, we show inhibition of a non-enveloped adenovirus. Our experiments suggest that GA inhibits virion entry by blocking the initial fusion event. Data showing inhibition of HSV-1 and CMV replication, when GA is administered post-infection, suggest a possible secondary mechanism targeting protein and DNA synthesis. Thus, in light of the strong effect of GA on viral infection, even after the infection begins, it may potentially be used to treat acute infections (e.g. Coronavirus, EBOV, ZIKV, IAV and measles), and also topically for the successful treatment of active lesions (e.g. HSV-1, HSV-2 and varicella-zoster virus (VZV)).


Asunto(s)
Antivirales/farmacología , Infecciones por Virus ADN/metabolismo , Virus ADN/efectos de los fármacos , Infecciones por Virus ARN/metabolismo , Virus ARN/efectos de los fármacos , Salicilatos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas Virales de Fusión/antagonistas & inhibidores , Animales , Astrocitos/metabolismo , Chlorocebus aethiops , Replicación del ADN/efectos de los fármacos , Infecciones por Virus ADN/virología , Virus ADN/genética , ADN Viral/genética , Células HEK293 , Humanos , Infecciones por Virus ARN/virología , Virus ARN/genética , Células Vero , Proteínas del Envoltorio Viral/biosíntesis , Proteínas Virales de Fusión/biosíntesis , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Aging Cell ; 16(5): 956-965, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28612507

RESUMEN

Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (ß-galactosidase and p16INK4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that ß-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of ß-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the ß-catenin pathway as potential therapeutic target to overcome astrocyte senescence.


Asunto(s)
Complejo SIDA Demencia/genética , Astrocitos/metabolismo , Estimulantes del Sistema Nervioso Central/efectos adversos , Metanfetamina/efectos adversos , Neuronas/metabolismo , Trastornos Relacionados con Sustancias/genética , beta Catenina/genética , Complejo SIDA Demencia/complicaciones , Complejo SIDA Demencia/metabolismo , Complejo SIDA Demencia/fisiopatología , Animales , Animales Modificados Genéticamente , Astrocitos/patología , Astrocitos/virología , Proteínas de Unión al Calcio , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Masculino , Ratones , Proteínas de Microfilamentos , Neuronas/patología , Neuronas/virología , Cultivo Primario de Células , Ratas , Transducción de Señal , Trastornos Relacionados con Sustancias/complicaciones , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , beta Catenina/metabolismo
16.
J Neuroinflammation ; 13(1): 242, 2016 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-27612942

RESUMEN

BACKGROUND: Neurological disorders have been linked to abnormal excitatory neurotransmission. Perturbations in glutamate cycling can have profound impacts on normal activity, lead to excitotoxicity and neuroinflammation, and induce and/or exacerbate impairments in these diseases. Astrocytes play a key role in excitatory signaling as they both clear glutamate from the synaptic cleft and house enzymes responsible for glutamate conversion to glutamine. However, mechanisms responsible for the regulation of glutamate cycling, including the main astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2 or GLT-1 in rodents) and glutamine synthetase (GS) which catalyzes the ATP-dependent reaction of glutamate and ammonia into glutamine, remain largely undefined. METHODS: Gain and loss of function for ß-catenin in human progenitor-derived astrocyte (PDAs) was used to assess EAAT2 and GS levels by PCR, western blot, luciferase reporter assays, and chromatin immunoprecipitation (ChIP). Further, morpholinos were stereotaxically injected into C57BL/6 mice and western blots measured the protein levels of ß-catenin, GLT-1, and GS. RESULTS: ß-Catenin, a transcriptional co-activator and the central mediator of Wnt/ß-catenin signaling pathway, positively regulates EAAT2 and GS at the transcriptional level in PDAs by partnering with T cell factor 1 (TCF-1) and TCF-3, respectively. This pathway is conserved in vivo as the knockdown of ß-catenin in the prefrontal cortex results in reduced GLT-1 and GS expression. CONCLUSIONS: These studies confirm that ß-catenin regulates key proteins responsible for excitatory glutamate neurotransmission in vitro and in vivo and reveal the therapeutic potential of ß-catenin modulation in treating diseases with abnormal glutamatergic neurotransmission and excitotoxicity.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Ácido Glutámico/metabolismo , beta Catenina/metabolismo , Animales , Encéfalo/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Ratones , Morfolinos/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Transfección , beta Catenina/genética
17.
J Immunol ; 196(1): 317-27, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26582945

RESUMEN

The role of CD8(+) T cells in HIV control in the brain and the consequences of such control are unclear. Approximately 3% of peripheral CD8(+) T cells dimly express CD4 on their surface. This population is known as CD4(dim)CD8(bright) T cells. We evaluated the role of CD4(dim)CD8(bright) and CD8 single positive T cells in HIV-infected brain using NOD/SCID/IL-2rcγ(-/-) mice reconstituted with human PBMCs (NSG-huPBMC). All three T cell populations (CD4 single positive, CD8 single positive, and CD4(dim)CD8(bright)) were found in NSG-huPBMC mouse brain within 2 wk of infection. Wnts secreted from astrocytes induced CD4(dim)CD8(bright) T cells by 2-fold in vitro. Injection of highly purified CD8 single positive T cells into mouse brain induced CD4(dim)CD8(bright) T cells by 10-fold, which were proliferative and exhibited a terminally differentiated effector memory phenotype. Brain CD4(dim)CD8(bright) T cells from HIV-infected mice exhibited anti-HIV-specific responses, as demonstrated by induction of CD107ab post exposure to HIV peptide-loaded targets. Further, higher frequency of CD4(dim)CD8(bright) T cells (R = -0.62; p ≤ 0.001), but not CD8 single positive T cells (R = -0.24; p ≤ 0.27), negatively correlated with HIV gag mRNA transcripts in HIV-infected NSG-huPBMC brain. Together, these studies indicate that single positive CD8(+) T cells entering the CNS during HIV infection can give rise to CD4(dim)CD8(bright) T cells, likely through a Wnt signaling-dependent manner, and that these cells are associated with potent anti-HIV control in the CNS. Thus, CD4(dim)CD8(bright) T cells are capable of HIV control in the CNS and may offer protection against HIV-associated neurocognitive disorders.


Asunto(s)
Encéfalo/inmunología , Antígenos CD4/metabolismo , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Vía de Señalización Wnt/inmunología , Animales , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/virología , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/trasplante , Movimiento Celular/inmunología , Células Cultivadas , Infecciones por VIH/virología , Xenoinjertos , Subunidad gamma Común de Receptores de Interleucina/genética , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/trasplante , Activación de Linfocitos/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Bazo/citología
18.
Glia ; 63(3): 441-51, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25331637

RESUMEN

HIV-mediated neuropathogenesis is a multifaceted process involving several players, including resident brain cells (neurons, astrocytes, and microglia) and infiltrating cells [peripheral blood mononuclear cells (PBMCs)]. We evaluated the dynamic interaction between astrocytes and infiltrating PBMCs as it impacts HIV in the CNS. We demonstrate that human primary-derived astrocytes (PDAs) predominantly secrete Wnt 1, 2b, 3, 5b, and 10b. Wnts are small secreted glycoproteins that initiate either ß-catenin-dependent or independent signal transduction. The Wnt pathway plays a vital role in the regulation of CNS activities including neurogenesis, neurotransmitter release, synaptic plasticity, and memory consolidation. We show that HIV infection of PDAs altered astrocyte Wnt profile by elevating Wnts 2b and 10b. Astrocyte conditioned media (ACM) inhibited HIV replication in PBMCs by 50%. Removal of Wnts from ACM abrogated its ability to suppress HIV replication in PBMCs. Inversely, PBMCs supernatant activated PDAs, as demonstrated by a 10-fold increase in HLA-DR and a 5-fold increase in IFNγ expression, and enhanced astrocyte susceptibility to HIV by 2-fold, which was mediated by IFNγ in a Stat-3-dependent manner. Collectively, these data demonstrate a dynamic interaction between astrocytes and PBMCs, whereby astrocyte-secreted Wnts exert an anti-HIV effect on infected PBMCs and PBMCs, in turn, secrete IFNγ that enhance astrocyte susceptibility to productive HIV infection and mediate their activation.


Asunto(s)
Complejo SIDA Demencia/fisiopatología , Astrocitos/fisiología , Leucocitos Mononucleares/fisiología , Complejo SIDA Demencia/virología , Astrocitos/virología , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Medios de Cultivo Condicionados , VIH/fisiología , Antígenos HLA-DR/metabolismo , Humanos , Interferón gamma/metabolismo , Leucocitos Mononucleares/virología , Factor de Transcripción STAT3/metabolismo , Proteínas Wnt/metabolismo
19.
Curr HIV Res ; 12(3): 164-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24862328

RESUMEN

Cells of the monocyte/macrophage lineage are an important target for HIV-1 infection. They are often at anatomical sites linked to HIV-1 transmission and are an important vehicle for disseminating HIV-1 throughout the body, including the central nervous system. Monocytes do not support extensive productive HIV-1 replication, but they become more susceptible to HIV-1infection as they differentiate into macrophages. The mechanisms guiding susceptibility of HIV-1 replication in monocytes versus macrophages are not entirely clear. We determined whether endogenous activity of ß-catenin signaling impacts differential susceptibility of monocytes and monocyte-derived macrophages (MDMs) to productive HIV-1 replication. We show that monocytes have an approximately 4-fold higher activity of ß-catenin signaling than MDMs. Inducing ß-catenin in MDMs suppressed HIV-1 replication by 5-fold while inhibiting endogenous ß-catenin signaling in monocytes by transfecting with a dominant negative mutant for the downstream effector of ß- catenin (TCF-4) promoted productive HIV-1 replication by 6-fold. These findings indicate that ß-catenin/TCF-4 is an important pathway for restricted HIV-1 replication in monocytes and plays a significant role in potentiating HIV-1 replication as monocytes differentiate into macrophages. Targeting this pathway may provide a novel strategy to purge the latent reservoir from monocytes/macrophages, especially in sanctuary sites for HIV-1 such as the central nervous system.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , VIH-1/fisiología , Macrófagos/inmunología , Monocitos/inmunología , Transducción de Señal , Factores de Transcripción/metabolismo , Replicación Viral , beta Catenina/metabolismo , VIH-1/inmunología , Humanos , Macrófagos/virología , Monocitos/virología , Factor de Transcripción 4
20.
AIDS Res Hum Retroviruses ; 30(7): 677-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24593860

RESUMEN

HIV infection is a risk factor for the tumorigenesis including non-AIDS-defining cancers such as those of the gastrointestinal tract. However, the mechanisms underlying such cancer outgrowth are still unknown. Furthermore, combined HIV/cancer studies are difficult to evaluate using primate models or in the clinical patient setting. To understand the mechanisms of tumor outgrowth in the context of HIV infection, we adopted a humanized mouse model permissive to infection and cancer as well as an in vivo humanized mouse challenge with colon cancer in the context of HIV infection. Immunodeficient NOD SCID IL-2R(-/-) mice were immunologically reconstituted by adoptive transfer of 10(7) HIV-negative donor peripheral blood leukocytes and challenged with 10(6) HCT116 human colon cancer cells. A group of mice was treated with antiretroviral therapy. Tumor microenvironment and epithelial tissues in the context of HIV infection were analyzed using immunohistochemistry. We demonstrate that HIV-infected humanized mice develop significantly larger tumors than uninfected mice (p<0.05). Epithelial cell proliferation in HIV-infected mice is significantly enhanced in comparison to proliferation in uninfected mice (p<0.01). Moreover, the activation of ß-catenin, an important step in intestinal epithelial cell proliferation and tumorigenesis, is elevated in the tumors of HIV-infected mice (p<0.0001). Importantly, antiretroviral therapy reverses these pathological processes independently of CD4(+) T cell return. These findings model the ability of HIV infection to result in tumor outgrowth that is evident in HIV-positive patients and lend insight into previously unrecognized mechanisms that may underlie this pathology.


Asunto(s)
Neoplasias Gastrointestinales/inmunología , Neoplasias Gastrointestinales/patología , Infecciones por VIH/inmunología , VIH-1/inmunología , Leucocitos/inmunología , Traslado Adoptivo , Animales , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Neoplasias Gastrointestinales/virología , Células HCT116 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Transfusión de Leucocitos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Receptores de Interleucina-2/genética , beta Catenina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA