Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Artículo en Inglés | MEDLINE | ID: mdl-38425090

RESUMEN

Volume overload represents a hallmark clinical feature linked to the development and progression of heart failure (HF). Alleviating signs and symptoms of volume overload represents a foundational HF treatment target that is achieved using loop diuretics in the acute and chronic setting. Recent work has provided evidence to support guideline-directed medical therapies, such as sodium glucose cotransporter 2 (SGLT2) inhibitors and mineralocorticoid receptor (MR) antagonists, as important adjunct diuretics that may act synergistically when used with background loop diuretics in people with chronic HF. Furthermore, there is growing interest in understanding the role of SGLT2 inhibitors, carbonic anhydrase inhibitors, thiazide diuretics, and MR antagonists in treating volume overload in patients hospitalized for acute HF, particularly in the setting of loop diuretic resistance. Thus, the current review demonstrates that: 1) SGLT2 inhibitors and MR antagonists confer long-term cardioprotection in chronic HF patients but it is unclear if natriuresis or diuresis represents the primary mechanisms for this benefit, 2) SGLT2 inhibitors, carbonic anhydrase inhibitors, and thiazide diuretics increase natriuresis in the acute HF setting, but implications on long-term outcomes remain unclear and warrants further investigation, and 3) a multi-nephron segment approach, using agents that act on distinct segments of the nephron, potentiate diuresis to alleviate signs and symptoms of volume overload in acute HF.

4.
J Appl Physiol (1985) ; 136(4): 917-927, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385178

RESUMEN

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) and the succeeding changes in beat-to-beat blood pressure (i.e., sympathetic transduction) provide important insights into the neural control of the circulation in humans. Despite its widespread use, the reliability of this technique remains unknown. Herein, we assessed the intra- and interday test-retest reliability of signal-averaging sympathetic transduction to blood pressure. Data were analyzed from 15 (9 M/6 F) young, healthy participants who completed two baseline recordings of fibular nerve MSNA separated by 60 min (intraday). The interday reliability was obtained in a subset of participants (n = 13, 9 M/4 F) who completed a follow-up MSNA study. Signal-averaging sympathetic transduction was quantified as peak change in diastolic (DBP) and mean arterial pressure (MAP) following a burst of MSNA. Analyses were also computed considering different MSNA burst sizes (quartiles of normalized MSNA) and burst patterns (singlets, couplets, triplets, and quadruplets+), as well as nonburst responses. Intraclass-correlation coefficients (ICCs) were used as the main reliability measure. Peak changes in MAP [intraday: ICC = 0.76 (0.30-0.92), P = 0.006; interday: ICC = 0.91 (0.63-0.97), P < 0.001] demonstrated very good to excellent reliability. Sympathetic transduction of MSNA burst size displayed moderate to very good reliability, though the reliability of MSNA burst pattern was poor to very good. Nonburst responses revealed poor intraday [ICC = 0.37 (-1.05 to 0.80), P = 0.21], but very good interday [ICC = 0.76 (0.18-0.93), P = 0.01] reliability. Intraday reliability measures were consistently lower than interday reliability. Similar results were obtained using DBP. Collectively, these findings provide evidence that the burst-triggering signal-averaging technique is a reliable measure of sympathetic transduction to blood pressure in young, healthy adults.NEW & NOTEWORTHY We found that signal-averaging sympathetic transduction to blood pressure displayed very good to excellent intra- and interday test-retest reliability in healthy, young adults. Reliability analyses according to muscle sympathetic burst size, burst pattern, and nonburst response were less consistent. Results were similar when using diastolic or mean arterial pressure in the transduction calculation. These findings suggest that the signal-averaging technique can be used with confidence to investigate sympathetic transduction to blood pressure in humans across time.


Asunto(s)
Músculo Esquelético , Sistema Nervioso Simpático , Adulto Joven , Humanos , Presión Sanguínea/fisiología , Reproducibilidad de los Resultados , Músculo Esquelético/fisiología , Sistema Nervioso Simpático/fisiología , Frecuencia Cardíaca/fisiología
5.
Am J Physiol Heart Circ Physiol ; 326(3): H612-H622, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214907

RESUMEN

Discharge of postganglionic muscle sympathetic nerve activity (MSNA) is related poorly to blood pressure (BP) in adults. Whether neural measurements beyond the prevailing level of MSNA can account for interindividual differences in BP remains unclear. The current study sought to evaluate the relative contributions of sympathetic-BP transduction and sympathetic baroreflex gain on resting BP in young adults. Data were analyzed from 191 (77 females) young adults (18-39 years) who underwent continuous measurement of beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and fibular nerve MSNA (microneurography). Linear regression analyses were computed to determine associations between sympathetic-BP transduction (signal-averaging) or sympathetic baroreflex gain (threshold technique) and resting BP, before and after controlling for age, body mass index, and MSNA burst frequency. K-mean clustering was used to explore sympathetic phenotypes of BP control and consequential influence on resting BP. Sympathetic-BP transduction was unrelated to BP in males or females (both R2 < 0.01; P > 0.67). Sympathetic baroreflex gain was positively associated with BP in males (R2 = 0.09, P < 0.01), but not in females (R2 < 0.01; P = 0.80), before and after controlling for age, body mass index, and MSNA burst frequency. K-means clustering identified a subset of participants with average resting MSNA, yet lower sympathetic-BP transduction and lower sympathetic baroreflex gain. This distinct subgroup presented with elevated BP in males (P < 0.02), but not in females (P = 0.10). Sympathetic-BP transduction is unrelated to resting BP, while the association between sympathetic baroreflex gain and resting BP in males reveals important sex differences in the sympathetic determination of resting BP.NEW & NOTEWORTHY In a sample of 191 normotensive young adults, we confirm that resting muscle sympathetic nerve activity is a poor predictor of resting blood pressure and now demonstrate that sympathetic baroreflex gain is associated with resting blood pressure in males but not females. In contrast, signal-averaged measures of sympathetic-blood pressure transduction are unrelated to resting blood pressure. These findings highlight sex differences in the neural regulation of blood pressure.


Asunto(s)
Barorreflejo , Hipertensión , Adulto Joven , Humanos , Masculino , Femenino , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Sistema Nervioso Simpático , Músculo Esquelético/inervación
7.
Clin Auton Res ; 33(6): 705-714, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776374

RESUMEN

PURPOSE: Our aim was to test the hypothesis that patients with chronic kidney disease (CKD) would exhibit augmented resting beat-to-beat blood pressure variability (BPV) that is associated with poor clinical outcomes independent of mean blood pressure (BP). In addition, since the arterial baroreflex plays a critical role in beat-to-beat BP regulation, we further hypothesized that an impaired baroreflex control would be associated with an augmented resting beat-to-beat BPV. METHODS: In 25 sedentary patients with CKD stages III-IV (62 ± 9 years) and 20 controls (57 ± 10 years), resting beat-to-beat BP (finger photoplethysmography) and heart rate (electrocardiography) were continuously measured for 10 min. We calculated the standard deviation (SD), average real variability (ARV) and other indices of BPV. The sequence technique was used to estimate spontaneous cardiac baroreflex sensitivity. RESULTS: Compared with controls (CON), the CKD group had significantly increased resting BPV. The ARV (2.2 ± 0.6 versus 1.6 ± 0.5 mmHg, P < 0.001; 1.6 ± 0.7 versus 1.3 ± 0.3 mmHg, P = 0.039; 1.4 ± 0.5 versus 1.0 ± 0.2 mmHg, P < 0.001) of systolic, diastolic and mean BP, respectively, was increased in CKD versus controls. Other traditional measures of variability showed similar results. The cardiac baroreflex sensitivity was lower in CKD compared with controls (CKD: 8.4 ± 4.5 ms/mmHg versus CON: 14.0 ± 8.2 ms/mmHg, P = 0.008). In addition, cardiac baroreflex sensitivity was negatively associated with BPV [systolic blood pressure (SBP) ARV; r = -0.44, P = 0.003]. CONCLUSION: In summary, our data demonstrate that patients with CKD have augmented beat-to-beat BPV and lower cardiac baroreflex sensitivity. BPV and cardiac baroreflex sensitivity were negatively correlated in this cohort. These findings may further our understanding about cardiovascular dysregulation observed in patients with CKD.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Sistema Cardiovascular , Hipertensión , Insuficiencia Renal Crónica , Humanos , Presión Sanguínea/fisiología , Corazón , Frecuencia Cardíaca/fisiología , Barorreflejo/fisiología
8.
J Appl Physiol (1985) ; 135(1): 154-164, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289954

RESUMEN

The sympathetic nervous system is important for cardiovascular regulation, particularly during acute stress. Efferent sympathetic outflow can be regulated in an organ-dependent manner, but whether renal and leg vasoconstriction are associated at rest or during sympathetic stressors is unknown. Therefore, we sought to determine the relationships between muscle sympathetic nerve activity (MSNA), leg vascular conductance (LVC), and renal vascular conductance (RVC) at rest and during common laboratory-based sympathoexcitatory stimuli in a cohort of young healthy adults. Beat-to-beat arterial pressure (photoplethysmography), MSNA (microneurography), superficial femoral artery blood flow, and renal artery blood velocity (Doppler ultrasound) were measured at rest and during static handgrip exercise (30% maximal voluntary contraction), postexercise circulatory occlusion (PECO), and cold stress (hand in 3.8 ± 1.3°C water) in 37 young healthy adults (16 females, 21 males). At rest, RVC was unrelated to LVC (r = -0.11, P = 0.55) or MSNA burst frequency (ρ = -0.22, P = 0.26). Static handgrip, PECO, and cold stress each induced an increase in mean arterial pressure and MSNA and a reduction in RVC (all P < 0.001). LVC was unaltered during stress (all P ≥ 0.16), with the exception of a reduction during the second minute of cold stress (P = 0.03). During stress, changes in RVC were not associated with changes in LVC (handgrip: r = -0.24, P = 0.21; PECO: ρ = -0.04, P = 0.82; cold stress: r = -0.17, P = 0.38) or MSNA (handgrip: ρ = -0.14, P = 0.48; PECO: r = 0.27, P = 0.15; cold stress: r = -0.27, P = 0.16). Furthermore, MSNA was not associated with LVC at rest or during stress (all P ≥ 0.12). The present findings highlight the differential control of regional sympathetic vasoconstriction at rest and during stress in young healthy humans.NEW & NOTEWORTHY The sympathetic nervous system plays a critical role in cardiovascular regulation at rest and during stress. We demonstrate that renal artery vascular conductance is unrelated to superficial femoral artery vascular conductance or muscle sympathetic nerve activity at rest or during laboratory-based sympathetic stressors in young healthy adults. These findings support the concept of differential control of peripheral sympathetic outflow at rest and during stress in humans.


Asunto(s)
Fuerza de la Mano , Pierna , Masculino , Adulto , Femenino , Humanos , Fuerza de la Mano/fisiología , Músculo Esquelético/fisiología , Arteria Femoral/fisiología , Sistema Nervioso Simpático/fisiología , Presión Sanguínea/fisiología
10.
J Physiol ; 601(3): 669-687, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36542455

RESUMEN

Post-hypoxia sympathoexcitation does not elicit corresponding changes in vascular tone, suggesting diminished sympathetic signalling. Blunted sympathetic transduction following acute hypoxia, however, has not been confirmed and the effects of hypoxia on the sympathetic transduction of mean arterial pressure (MAP) as a function of action potential (AP) activity is unknown. We hypothesized that MAP changes would be blunted during acute hypoxia but restored in recovery and asynchronous APs would elicit smaller MAP changes than synchronous APs. Seven healthy males (age: 24 (3) years; BMI: 25 (3) kg/m2 ) underwent 20 min isocapnic hypoxia (PET O2 : 47 (2) mmHg) and 30 min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 7 min) and late (last 7 min) recovery. AP groups were classified as synchronous APs, asynchronous APs (occurring outside an MSNA burst) and no AP activity. Sympathetic transduction of MAP was quantified using signal-averaging, with ΔMAP tracked following AP group cardiac cycles. Following synchronous APs, ΔMAP was reduced in hypoxia (+1.8 (0.9) mmHg) and early recovery (+1.5 (0.7) mmHg) compared with baseline (+3.1 (2.2) mmHg). AP group-by-condition interactions show that at rest asynchronous APs attenuate MAP reductions compared with no AP activity (-0.4 (1.1) vs. -2.2 (1.2) mmHg, respectively), with no difference between AP groups in hypoxia, early or late recovery. Sympathetic transduction of MAP is blunted in hypoxia and early recovery. At rest, asynchronous sympathetic APs contribute to neural regulation of MAP by attenuating nadir pressure responses. KEY POINTS: Acute isocapnic hypoxia elicits lasting sympathoexcitation that does not correspond to parallel changes in vascular tone, suggesting blunted sympathetic transduction. Signal-averaging techniques track the magnitude and temporal cardiovascular responses following integrated muscle sympathetic nerve activity (MSNA) burst and non-burst cardiac cycles. However, this does not fully characterize the effects of sympathetic action potential (AP) activity on blood pressure control. We show that hypoxia blunts the sympathetic transduction of mean arterial pressure (MAP) following synchronous APs that form integrated MSNA bursts and that sympathetic transduction of MAP remains attenuated into early recovery. At rest, asynchronous APs attenuate the reduction in MAP compared with cardiac cycles following no AP activity, thus asynchronous sympathetic APs appear to contribute to the neural regulation of blood pressure. The results advance our understanding of sympathetic transduction of arterial pressure during and following exposure to acute isocapnic hypoxia in humans.


Asunto(s)
Presión Arterial , Hipoxia , Masculino , Humanos , Adulto Joven , Adulto , Potenciales de Acción , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología , Músculo Esquelético/irrigación sanguínea , Frecuencia Cardíaca/fisiología
11.
Am J Physiol Regul Integr Comp Physiol ; 323(5): R810-R821, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189987

RESUMEN

The effects of sympathetic activity on vasoconstriction are dampened in active skeletal muscle during exercise, a phenomenon termed functional sympatholysis. Limited work has examined the influence of sex on the magnitude of sympatholysis or the test-retest reliability of measurements. In 16 women and 15 men, forearm blood flow (FBF; Doppler ultrasound), muscle oxygenation (near-infrared spectroscopy, NIRS), and beat-to-beat mean arterial pressure (MAP; photoplethysmography) were measured during lower-body negative pressure (LBNP; -20 mmHg) at rest and simultaneously during rhythmic handgrip exercise (30% maximum contraction). Measures were taken twice within the same visit (separated by 15 min) and repeated on a second visit. Forearm vascular conductance (FVC) was calculated as FBF/MAP. The magnitude of sympatholysis was calculated as the difference of LBNP-induced changes between handgrip and rest. LBNP decreased FBF (Δ-45 ± 15%), FVC (Δ-45 ± 16%), and muscle oxygenation (Δ-14 ± 11%); however, these responses were attenuated when LBNP was applied during rhythmic handgrip exercise (Δ-7 ± 9%, Δ-9 ± 10%, and Δ-6 ± 9%, respectively). The magnitude of sympatholysis was not different between men and women (FBF: 40 ± 16% vs. 35 ± 9%, P = 0.37; FVC: 38 ± 16% vs. 35 ± 11%, P = 0.53; muscle oxygenation: 5 ± 9% vs. 11 ± 10%, P = 0.11). Furthermore, sympatholysis measurements demonstrated good to excellent intraday (intraclass-correlation coefficients; ICC ≥ 0.85) and interday (ICC ≥ 0.72) test-retest reliability (all P ≤ 0.01) in both sexes. The coefficients of variation were larger with NIRS (68-91%) than with Doppler ultrasound (16%-22%) assessments of functional sympatholysis. Collectively, these findings demonstrate that assessments of functional sympatholysis are not impacted by biological sex and that Doppler ultrasound-derived measures of sympatholysis have better within-subject reliability than NIRS-derived measures in young healthy adults.


Asunto(s)
Fuerza de la Mano , Consumo de Oxígeno , Adulto , Femenino , Humanos , Masculino , Fuerza de la Mano/fisiología , Consumo de Oxígeno/fisiología , Simpaticolíticos , Espectroscopía Infrarroja Corta , Caracteres Sexuales , Reproducibilidad de los Resultados , Antebrazo/irrigación sanguínea , Músculo Esquelético/metabolismo , Vasoconstricción , Ultrasonografía Doppler , Contracción Muscular/fisiología , Flujo Sanguíneo Regional/fisiología
12.
Hypertension ; 79(12): 2764-2773, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252088

RESUMEN

BACKGROUND: Heart failure with reduced ejection fraction (HFrEF) is associated with reduced cardiac ß-adrenergic signal transduction in response to chronic elevations in neurally released and circulating norepinephrine. Whether elevations in muscle sympathetic nerve activity (MSNA) are accompanied by attenuated α-adrenoceptor-mediated vasoconstriction remains unclear. Therefore, the objective of the current work was to compare transduction of sympathetic firing into blood pressure (BP) in treated patients with HFrEF and healthy controls. METHODS: Twenty-three treated patients with HFrEF (4 females, left ventricular ejection fraction: 28±2%) and 22 healthy controls (6 females) underwent a 7-minute resting measurement of continuous beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and MSNA (microneurography). Sympathetic-BP transduction was quantified using both signal averaging, whereby the BP response to each MSNA burst was serially tracked over 15 cardiac cycles and averaged to derive the peak change in BP, and cross-spectral analysis of low-frequency (0.04-0.15 Hz) MSNA and BP oscillations. RESULTS: Compared with controls, patients with HFrEF had less sympathetic-BP transduction (0.7±0.3 versus 0.2±0.3 mm Hg; P<0.01), and lower low-frequency oscillations in MSNA (120±56 versus 64±32 arbitrary units2; P<0.01) and BP (3.1±1.6 versus 2.0±1.7 mm Hg2; P<0.01). In subgroup analysis, resting sympathetic-BP transduction was lower in patients with HFrEF with normal resting MSNA compared to healthy controls (0.7±0.3 versus 0.4±0.3 mm Hg; P=0.01) and further attenuated (0.1±0.1 mm Hg; P=0.03) in patients with HFrEF with elevated resting MSNA. CONCLUSIONS: Treated HFrEF is associated with lower sympathetic-BP transduction, even when MSNA is not elevated, and diminishes further with disease progression. These adaptations may serve to limit the adverse consequences of oscillatory surges in sympathetic vasoconstrictor discharge on stroke volume.


Asunto(s)
Insuficiencia Cardíaca , Disfunción Ventricular Izquierda , Femenino , Humanos , Presión Sanguínea/fisiología , Volumen Sistólico/fisiología , Sistema Nervioso Simpático , Frecuencia Cardíaca/fisiología , Músculo Esquelético/inervación
14.
J Physiol ; 600(13): 3127-3147, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35661360

RESUMEN

Baroreflex resetting permits sympathetic long-term facilitation (sLTF) following hypoxia; however, baroreflex control of action potential (AP) clusters and AP recruitment patterns facilitating sLTF is unknown. We hypothesized that baroreflex resetting of arterial pressure operating points (OPs) of AP clusters and recruitment of large-amplitude APs would mediate sLTF following hypoxia. Eight men (age: 24 (3) years; body mass index: 24 (3) kg/m2 ) underwent 20 min isocapnic hypoxia ( PETO2${P_{{\rm{ET}}{{\rm{O}}_{\rm{2}}}}}$ : 47 (2) mmHg) and 30 min recovery. Multi-unit microneurography (muscle sympathetic nerve activity; MSNA) and a continuous wavelet transform with matched mother wavelet was used to detect sympathetic APs during baseline, hypoxia, early (first 5 min), and late recovery (last 5 min). AP amplitude (normalized to largest baseline AP amplitude), percentage APs occurring outside a MSNA burst (percentage asynchronous APs), and proportion of APs firing in small (1-3), medium (4-6) and large (7-10) normalized cluster sizes was calculated. Normalized clusters were used to assess baroreflex OPs and sensitivity. Hypoxia increased total MSNA activity, which remained elevated during recovery (P < 0.0001). Baroreflex OPs were shifted rightward for all clusters in recovery, with no effect on slope. Compared to baseline, AP amplitude was elevated by 3 (2)% and 4 (2)% while asynchronous APs were reduced by 9 (5)% and 7 (6)% in early and late recovery, respectively. In early recovery, the proportion of APs firing in large clusters was increased compared to baseline. Hypoxia-induced sLTF is mediated by baroreflex resetting of AP clusters to higher OPs, reduced asynchronous AP firing, and increased contribution from large-amplitude APs. KEY POINTS: Acute isocapnic hypoxia resets the arterial baroreflex and permits long-lasting sympathoexcitation, termed sympathetic long-term facilitation. Our understanding of sympathetic long-term facilitation following hypoxia in humans is based on multiunit muscle sympathetic nerve activity and does not fully characterize the underlying baroreflex control of sympathetic neuronal subpopulations or their discharge/recruitment strategies. We show that sympathetic long-term facilitation is mediated by baroreflex resetting of sympathetic action potential clusters to higher arterial pressure operating points, a reduction in the percentage of action potentials firing asynchronously, and a shift toward larger amplitude action potential activity. The results advance our fundamental understanding of how the sympathetic nervous system mediates sympathetic long-term facilitation following exposure to acute isocapnic hypoxia in humans.


Asunto(s)
Barorreflejo , Sistema Nervioso Simpático , Potenciales de Acción , Adulto , Presión Arterial , Barorreflejo/fisiología , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Hipoxia , Masculino , Músculo Esquelético/fisiología , Sistema Nervioso Simpático/fisiología , Adulto Joven
15.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R620-R628, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35470697

RESUMEN

Sympathetic transduction of blood pressure (BP) is correlated negatively with resting muscle sympathetic nerve activity (MSNA) in cross-sectional data, but the acute effects of increasing MSNA are unclear. Sixteen (4 female) healthy adults (26 ± 3 years) underwent continuous measurement of heart rate, BP, and MSNA at rest and during graded lower body negative pressure (LBNP) at -10, -20, and -30 mmHg. Sympathetic transduction of BP was quantified in the time (signal averaging) and frequency (MSNA-BP gain) domains. The proportions of MSNA bursts firing within each tertile of BP were calculated. As expected, LBNP increased MSNA burst frequency (P < 0.01) and burst amplitude (P < 0.02), although the proportions of MSNA bursts firing across each BP tertile remained stable (all P > 0.44). The MSNA-diastolic BP low-frequency transfer function gain (P = 0.25) was unchanged during LBNP; the spectral coherence was increased (P = 0.03). Signal-averaged sympathetic transduction of diastolic BP was unchanged (from 2.1 ± 1.0 at rest to 2.4 ± 1.5, 2.2 ± 1.3, and 2.3 ± 1.4 mmHg; P = 0.43) during LBNP, but diastolic BP responses following nonburst cardiac cycles progressively decreased (from -0.8 ± 0.4 at rest to -1.0 ± 0.6, -1.2 ± 0.6, and -1.6 ± 0.9 mmHg; P < 0.01). As a result, the difference between MSNA burst and nonburst diastolic BP responses was increased (from 2.9 ± 1.4 at rest to 3.4 ± 1.9, 3.4 ± 1.9, and 3.9 ± 2.1 mmHg; P < 0.01). In conclusion, acute increases in MSNA using LBNP did not alter traditional signal-averaged or frequency-domain measures of sympathetic transduction of BP or the proportion of MSNA bursts firing at different BP levels. The factors that determine changes in the firing of MSNA bursts relative to oscillations in BP require further investigation.


Asunto(s)
Presión Negativa de la Región Corporal Inferior , Músculo Esquelético , Adulto , Presión Sanguínea/fisiología , Estudios Transversales , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Músculo Esquelético/fisiología , Sistema Nervioso Simpático
16.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R501-R510, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35348021

RESUMEN

Resting beat-to-beat blood pressure variability is a powerful predictor of cardiovascular events and end-organ damage. However, its underlying mechanisms remain unknown. Herein, we tested the hypothesis that a potentiation of GABAergic synaptic transmission by diazepam would acutely increase resting beat-to-beat blood pressure variability. In 40 (17 females) young, normotensive subjects, resting beat-to-beat blood pressure (finger photoplethysmography) was continuously measured for 5-10 min, 60 min after the oral administration of either diazepam (10 mg) or placebo. The experiments were conducted in a randomized, double-blinded, and placebo-controlled design. Stroke volume was estimated from the blood pressure waveform (ModelFlow) permitting the calculation of cardiac output and total peripheral resistance. Direct recordings of muscle sympathetic nerve activity (MSNA, microneurography) were obtained in a subset of subjects (n = 13), and spontaneous cardiac and sympathetic baroreflex sensitivity were calculated. Compared with placebo, diazepam significantly increased the standard deviation of systolic blood pressure (4.7 ± 1.4 vs. 5.7 ± 1.5 mmHg, P = 0.001), diastolic blood pressure (3.8 ± 1.2 vs. 4.5 ± 1.2 mmHg, P = 0.007), and mean blood pressure (3.8 ± 1.1 vs. 4.5 ± 1.1 mmHg, P = 0.002), as well as cardiac output (469 ± 149 vs. 626 ± 259 mL/min, P < 0.001) and total peripheral resistance (1.0 ± 0.3 vs. 1.4 ± 0.6 mmHg/L/min, P < 0.001). Similar results were found using different indices of variability. Furthermore, diazepam reduced MSNA (placebo: 22 ± 6 vs. diazepam: 18 ± 8 bursts/min, P = 0.025) without affecting the arterial baroreflex control of heart rate (placebo: 18.6 ± 6.7 vs. diazepam: 18.8 ± 7.0 ms/mmHg, P = 0.87) and MSNA (placebo: -3.6 ± 1.2 vs. diazepam: -3.4 ± 1.5 bursts/100 Hb/mmHg, P = 0.55). Importantly, these findings were not impacted by biological sex. We conclude that GABAA receptors modulate resting beat-to-beat blood pressure variability in young adults.


Asunto(s)
Barorreflejo , Diazepam , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Diazepam/farmacología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Músculo Esquelético/fisiología , Receptores de GABA-A , Sistema Nervioso Simpático/fisiología , Transmisión Sináptica , Adulto Joven
17.
Circ Cardiovasc Interv ; 15(3): e011323, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35135301

RESUMEN

BACKGROUND: Coronary microvascular function can be distinctly quantified using the coronary flow reserve (CFR) and index of microvascular resistance (IMR). Patients with low CFR can present with low or high IMR, although the prevalence and clinical characteristics of these patient groups remain unclear. METHODS: One hundred ninety-nine patients underwent coronary microvascular assessments using coronary thermodilution techniques. A pressure-temperature sensor-tipped guidewire measured proximal and distal coronary pressure, whereas the inverse of the mean transit time to room temperature saline was used to measure coronary blood flow. The CFR and IMR were quantified during adenosine and acetylcholine hyperemia. RESULTS: Low adenosine and acetylcholine CFR was observed in 70 and 49 patients, respectively, whereas low CFR/low IMR to adenosine and acetylcholine was observed in 39(56%) and 19(39%) patients, respectively. Despite similar adenosine CFR, patients with low CFR/low IMR had increased resting (2.8±1.2 versus 1.3±0.4s-1) and hyperemic coronary blood flow (4.8±1.5 versus 2.1±0.5s-1) compared with patients with low CFR/high IMR (both P<0.01). The same pattern was observed in response to acetylcholine. Patients with low CFR/low IMR to adenosine were younger (56±12 versus 63±10 years), women (84% versus 66%), had fewer coronary risk factors (1.1±1.0 versus 1.6±1.1), lower hemoglobin A1c (5.8±0.7 versus 6.1±0.9 mmol/L), and thinner septal thickness (8.5±2.5 versus 9.9±1.6 mm) compared with patients with low CFR/high IMR to adenosine (all P<0.05). CONCLUSIONS: Low CFR/low IMR to adenosine and acetylcholine are associated with elevated resting coronary blood flow and preserved hyperemic coronary blood flow. These patients present with distinct phenotypic characteristics. Simultaneous CFR and IMR measures appear necessary to differentiate these endotypes.


Asunto(s)
Vasos Coronarios , Hiperemia , Acetilcolina , Adenosina , Dolor en el Pecho , Circulación Coronaria/fisiología , Vasos Coronarios/diagnóstico por imagen , Femenino , Humanos , Microcirculación , Resultado del Tratamiento , Resistencia Vascular
18.
Am J Physiol Regul Integr Comp Physiol ; 322(2): R123-R125, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043690
20.
Am J Physiol Heart Circ Physiol ; 321(4): H798-H806, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506224

RESUMEN

Signal-averaged sympathetic transduction of blood pressure (BP) is inversely related to resting muscle sympathetic nerve activity (MSNA) burst frequency in healthy cohorts. Whether this represents a physiological compensatory adaptation or a methodological limitation, remains unclear. The current analysis aimed to determine the contribution of methodological limitations by evaluating the dependency of MSNA transduction at different levels of absolute BP. Thirty-six healthy participants (27 ± 7 yr, 9 females) underwent resting measures of beat-to-beat heart rate, BP, and muscle sympathetic nerve activity (MSNA). Tertiles of mean arterial pressure (MAP) were computed for each participant to identify cardiac cycles occurring below, around, and above the MAP operating pressure (OP). Changes in hemodynamic variables were computed across 15 cardiac cycles within each MAP tertile to quantify sympathetic transduction. MAP increased irrespective of sympathetic activity when initiated below the OP, but with MSNA bursts provoking larger rises (3.0 ± 0.9 vs. 2.1 ± 0.7 mmHg; P < 0.01). MAP decreased irrespective of sympathetic activity when initiated above the OP, but with MSNA bursts attenuating the drop (-1.3 ± 1.1 vs. -3.1 ± 1.2 mmHg; P < 0.01). In participants with low versus high resting MSNA (12 ± 4 vs. 32 ± 10 bursts/min), sympathetic transduction of MAP was not different when initiated by bursts below (3.2 ± 1.0 vs. 2.8 ± 0.9 mmHg; P = 0.26) and above the OP (-1.0 ± 1.3 vs. -1.6 ± 0.8 mmHg; P = 0.08); however, low resting MSNA was associated with a smaller proportion of MSNA bursts firing above the OP (15 ± 5 vs. 22 ± 5%; P < 0.01). The present analyses demonstrate that the signal-averaging technique for calculating sympathetic transduction of BP is influenced by the timing of an MSNA burst relative to cyclic oscillations in BP.NEW & NOTEWORTHY The current signal-averaging technique for calculating sympathetic transduction of blood pressure does not consider the arterial pressure at which each muscle sympathetic burst occurs. A burst firing when mean arterial pressure is above the operating pressure was associated with a decrease in blood pressure. Thus, individuals with higher muscle sympathetic nerve activity demonstrate a reduced sympathetic transduction owing to the weighted contribution of more sympathetic bursts at higher levels of arterial pressure.


Asunto(s)
Presión Arterial , Sistema Cardiovascular/inervación , Músculo Esquelético/inervación , Descanso , Sistema Nervioso Simpático/fisiología , Adulto , Determinación de la Presión Sanguínea , Impedancia Eléctrica , Electrodiagnóstico , Femenino , Humanos , Masculino , Fotopletismografía , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...