Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38746094

RESUMEN

Advances in single-particle cryogenic electron microscopy (cryoEM) now allow for routine structure determination of well-behaved biological specimens to high-resolution. Despite advances in the electron microscope, direct electron detectors, and data processing software, the preparation of high-quality grids with thin layers of vitreous ice containing the specimen of interest in random orientations remains a critical bottleneck for many projects. Although numerous efforts have been dedicated to overcoming hurdles frequently encountered during specimen vitrification using traditional blot-and-plunge specimen preparation techniques, the development of blot-free grid preparation devices provide a unique opportunity to carefully tune ice thickness, particle density, and specimen behavior during the vitrification process for improvements in image quality. Here, we describe critical steps of high-quality grid preparation using a SPT Labtech chameleon, evaluation of grid quality/ice thickness using the chameleon software, high-throughput imaging in the electron microscope, and recommend steps for troubleshooting grid preparation when standard parameters fail to yield suitable specimen.

2.
J Phys Chem B ; 124(40): 8750-8760, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32924491

RESUMEN

Oxidoreductase enzymes often perform technologically useful chemical transformations using abundant metal cofactors with high efficiency under ambient conditions. The understanding of the catalytic mechanism of these enzymes is, however, highly dependent on the availability of well-characterized and optimized time-resolved analytical techniques. We have developed an approach for rapidly injecting electrons into a catalytic system using a photoactivated nanomaterial in combination with a range of redox mediators to produce a potential jump in solution, which then initiates turnover via electron transfer (ET) to the catalyst. The ET events at the nanomaterial-mediator-catalyst interfaces are, however, highly sensitive to the experimental conditions such as photon flux, relative concentrations of system components, and pH. Here, we present a systematic optimization of these experimental parameters for a specific catalytic system, namely, [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1). The developed strategies can, however, be applied in the study of a wide variety of oxidoreductase enzymes. Our potential jump system consists of CdSe/CdS core-shell nanorods as a photosensitizer and a series of substituted bipyridinium salts as mediators with redox potentials in the range from -550 to -670 mV (vs SHE). With these components, we screened the effect of pH, mediator concentration, protein concentration, photosensitizer concentration, and photon flux on steady-state photoreduction and hydrogen production as well as ET and potential jump efficiency. By manipulating these experimental conditions, we show the potential of simple modifications to improve the tunability of the potential jump for application to study oxidoreductases.


Asunto(s)
Hidrogenasas , Proteínas Hierro-Azufre , Transporte de Electrón , Electrones , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Rayos Láser , Oxidación-Reducción , Oxidorreductasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...