Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(26): e202405426, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38641686

RESUMEN

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.5 A/g. These findings suggest that CityU-25 is a standout candidate for advanced battery technologies, highlighting the potential application of this type of materials.

2.
ChemSusChem ; 17(2): e202301228, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37718309

RESUMEN

The practical implementation of the lithium metal anode (LMA) has long been pursued due to its extremely high specific capacity and low electrochemical equilibrium potential. However, the unstable interfaces resulting from lithium ultrahigh reactivity have significantly hindered the use of LMA. This instability directly leads to dendrite growth behavior, dead lithium, low Coulombic efficiency, and even safety concerns. Therefore, artificial solid electrolyte interfaces (ASEI) with enhanced physicochemical and electrochemistry properties have been explored to stabilize LMA. Polymer materials, with their flexible structures and multiple functional groups, offer a promising way for structurally designing ASEIs to address the challenges faced by LMA. This Concept demonstrates an overview of polymer ASEIs with different functionalities, such as providing uniform lithium ion and single-ion transportation, inhibiting side reactions, possessing self-healing ability, and improving air stability. Furthermore, challenges and prospects for the future application of polymeric ASEIs in commercial lithium metal batteries (LMBs) are also discussed.

3.
Nanomicro Lett ; 15(1): 235, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874415

RESUMEN

The practical application of Li metal anodes (LMAs) is limited by uncontrolled dendrite growth and side reactions. Herein, we propose a new friction-induced strategy to produce high-performance thin Li anode (Li@CFO). By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling, a robust organic/inorganic hybrid interlayer (lithiophilic LiF/LiC6 framework hybridized -CF2-O-CF2- chains) was formed atop Li metal. The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface. The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h (1.0 mA cm-2 and 1.0 mAh cm-2) and 1,350 cycles even at a harsh condition (18.0 mA cm-2 and 3.0 mAh cm-2). When paired with high-loading LiFePO4 cathodes, the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%. This work provides a new friction-induced strategy for producing high-performance thin LMAs.

4.
ACS Nano ; 17(20): 20315-20324, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37787661

RESUMEN

The development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li+ solvation structure in the electrolyte, resulting in Li+ homogeneous diffusion and Li+ deposition barrier reduction. 8AP exhibits good ionic conductivity (4.9 × 10-4 S cm-1), a high Li+ migration number (0.88), and a significant electrolyte uptake (293%). The 3D LiB skeleton can significantly reduce the anode volume changes and local current density during the charging/discharging process. Therefore, 8AP@LiB effectively regulates the Li+ flux and promotes the uniform Li deposition without dendrites. The Li||Li symmetrical cells of 8AP@LiB exhibit a high electrochemical stability of up to 1000 h at 1 mA cm-2 and 5 mAh cm-2. Importantly, the Li||LiFePO4 full cells of 8AP@LiB achieve an impressive 2000 cycles at 2C, while maintaining a high-capacity retention of 86%. The synergistic effect of the functionalized separator and LiB anode might provide a direction for the development of high-performance LMBs.

5.
Angew Chem Int Ed Engl ; 62(26): e202305287, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37118881

RESUMEN

Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm-2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.


Asunto(s)
Litio , Metales , Electrólitos , Ácidos Carboxílicos , Éteres Cíclicos , Polímeros
6.
Adv Mater ; 35(15): e2211203, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36704837

RESUMEN

Lithium metal is a promising anode for high-energy-density lithium batteries, but its practical application is still hindered by intrinsic defects such as infinite volume expansion and uncontrollable dendrite growth. Herein, a dendrite-free 3D composite Li anode (Li-B@SSM) is prepared by mechanical rolling of lithiophilic LiB nanofibers supported by Li-B composite and lithiophobic stainless-steel mesh (SSM). Featuring hierarchical lithiophilic-lithiophobic dual-skeletons, the Li-B@SSM anode shows an ultrahigh Coulombic efficiency of 99.95% and a long lifespan of 900 h under 2 mA cm-2 /1 mAh cm-2 . It is demonstrated that the abnormally reversible Li stripping/plating processes should be closely related to the site-selective plating behavior and spatial confinement effect induced by the robust lithiophilic-lithiophobic dual-skeletons, which alleviates the volume changes, suppresses the growth of Li dendrites, and reduces the accumulation of "dead" Li. More importantly, the application feasibility of the Li-B@SSM anode is also confirmed in full batteries, of which the Li-B@SSM|LiFePO4 full cell shows a high capacity retention of 97.5% after 400 cycles while the Li-B@SSM|S pouch battery exhibits good cycle stability even under practically harsh conditions. This work paves the way for the facile and efficient fabrication of high-efficiency Li metal anodes toward practical applications.

7.
ACS Nano ; 15(1): 210-239, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33405889

RESUMEN

Owing to the energy crisis and environmental pollution, developing efficient and robust electrochemical energy storage (or conversion) systems is urgently needed but still very challenging. Next-generation electrochemical energy storage and conversion devices, mainly including fuel cells, metal-air batteries, metal-sulfur batteries, and metal-ion batteries, have been viewed as promising candidates for future large-scale energy applications. All these systems are operated through one type of chemical conversion mechanism, which is currently limited by poor reaction kinetics. Single atom catalysts (SACs) perform maximum atom efficiency and well-defined active sites. They have been employed as electrode components to enhance the redox kinetics and adjust the interactions at the reaction interface, boosting device performance. In this Review, we briefly summarize the related background knowledge, motivation and working principle toward next-generation electrochemical energy storage (or conversion) devices, including fuel cells, Zn-air batteries, Al-air batteries, Li-air batteries, Li-CO2 batteries, Li-S batteries, and Na-S batteries. While pointing out the remaining challenges in each system, we clarify the importance of SACs to solve these development bottlenecks. Then, we further explore the working principle and current progress of SACs in various device systems. Finally, future opportunities and perspectives of SACs in next-generation electrochemical energy storage and conversion devices are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...