Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(2): 103040, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38669139

RESUMEN

Here, we present a protocol for using Skipper, a pipeline designed to process crosslinking and immunoprecipitation (CLIP) data into annotated binding sites. We describe steps for partitioning annotated transcript regions and fitting data to a beta-binomial model to call windows of enriched binding. From raw CLIP data, we detail how users can map reproducible RNA-binding sites to call enriched windows and perform downstream analysis. This protocol supports optional customizations for different use cases. For complete details on the use and execution of this protocol, please refer to Boyle et al.1.


Asunto(s)
Inmunoprecipitación , Sitios de Unión , Inmunoprecipitación/métodos , Humanos , Programas Informáticos , Reactivos de Enlaces Cruzados/química , ARN/metabolismo , ARN/genética
2.
Nucleic Acids Res ; 52(8): 4440-4455, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38554115

RESUMEN

Large-genome bacteriophages (jumbo phages) of the proposed family Chimalliviridae assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and DNA-targeting CRISPR-Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here, we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d results in accumulation of phage-encoded mRNAs in the phage nucleus, reduces phage protein production, and compromises virion assembly. Taken together, our data show that the conserved ChmC protein plays crucial roles in the viral life cycle, potentially by facilitating phage mRNA translocation through the nuclear shell to promote protein production and virion development.


Asunto(s)
Bacteriófagos , Proteínas de Unión al ARN , Bacteriófagos/fisiología , Núcleo Celular/metabolismo , Sistemas CRISPR-Cas , Genoma Viral , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Viral/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ensamble de Virus
3.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790334

RESUMEN

Large-genome bacteriophages (jumbo phages) of the Chimalliviridae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term Chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro, and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA in vitro. Targeted knockdown of ChmC using mRNA-targeting dCas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.

4.
Cell Genom ; 3(6): 100317, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37388912

RESUMEN

Technology for crosslinking and immunoprecipitation (CLIP) followed by sequencing (CLIP-seq) has identified the transcriptomic targets of hundreds of RNA-binding proteins in cells. To increase the power of existing and future CLIP-seq datasets, we introduce Skipper, an end-to-end workflow that converts unprocessed reads into annotated binding sites using an improved statistical framework. Compared with existing methods, Skipper on average calls 210%-320% more transcriptomic binding sites and sometimes >1,000% more sites, providing deeper insight into post-transcriptional gene regulation. Skipper also calls binding to annotated repetitive elements and identifies bound elements for 99% of enhanced CLIP experiments. We perform nine translation factor enhanced CLIPs and apply Skipper to learn determinants of translation factor occupancy, including transcript region, sequence, and subcellular localization. Furthermore, we observe depletion of genetic variation in occupied sites and nominate transcripts subject to selective constraint because of translation factor occupancy. Skipper offers fast, easy, customizable, and state-of-the-art analysis of CLIP-seq data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...