Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Conserv Dent ; 21(5): 495-499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294109

RESUMEN

AIM: The aim of this randomized, controlled, double-blinded, clinical study is to evaluate and compare the clinical effectiveness of low-level diode GaAlAs laser and glutaraldehyde-based topical desensitizing agent on cervical dentin hypersensitivity with the help of visual analog scale (VAS). MATERIALS AND METHODS: Fifty teeth of patients aged between 20 and 50 years were included, and VAS was used to assess the dentin hypersensitivity. The teeth were randomly allocated to either Group 1 or 2 using flip coin technique. Group 1 received glutaraldehyde desensitizer and Group 2 received 905 nm low-level laser. The sensitivity scores were recorded, immediately, after1 week and 3 months after therapy. Data was analyzed using Mann-Whitney U test for intergroup comparison and Friedman's test for intragroup comparison. RESULTS: There was a significant reduction in pain in both the groups at 3 months evaluation (P = 0.001).However, Group 2 showed a significant decrease in mean VAS scores when compared with Group 1 at both the one week and three month follow ups (P = 0.04, P = 0.03, respectively). CONCLUSION: Although topical desensitizer and Low Level Laser are both effective in reducing dentinal hypersensitivity, Low Level Lasers are comparatively more effective at the studied time intervals.

2.
J Nanosci Nanotechnol ; 17(2): 1267-274, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29683301

RESUMEN

Hetero atoms containing conductive nanocarbon materials are being studied extensively for their electrochemical energy storage and conversion applications. Herein, we report a facile process for the preparation of N-containing carbon/graphene nanocomposites by simultaneous thermal decomposition of polypyrrole into N-containing carbon and reduction of graphene oxide into graphene in H2/Ar atmosphere. The XRD pattern of N-containing carbon/graphene nanocomposites prepared at different temperatures indicated the formation of reduced graphene oxide from the reduction of GO. The FT-IR and Raman spectroscopic analysis revealed the presence of N atoms in the nanocomposites and the elemental analysis was used to estimate the amount of N in the nanocomposite. The XPS analysis distinguished the pyridine, pyrrolic and quaternary forms of N present in the nanocomposite. The slow decomposition of polypyrrole resulted in the mesoporous structure to the resulting nanocomposite, which was confirmed by the BET adsorption­desorption isotherm. The electron microscopic analysis confirmed the presence of highly transparent carbon nanosheets. The amount of N in the nanocomposite that depends on the decomposition temperature was found to influence the electrochemical performance. The nanocomposite prepared at 700 °C showed a large specific capacitance of 296 F/g with an excellent cycling stability of 93% after 1000 cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...