Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 373(6558): 998-1004, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34446601

RESUMEN

In eukaryotic cells, half of all proteins function as subunits within multiprotein complexes. Imbalanced synthesis of subunits leads to unassembled intermediates that must be degraded to minimize cellular toxicity. Here, we found that excess PSMC5, a subunit of the proteasome base, was targeted for degradation by the HERC1 ubiquitin ligase in mammalian cells. HERC1 identified unassembled PSMC5 by its cognate assembly chaperone PAAF1. Because PAAF1 only dissociates after assembly, HERC1 could also engage later assembly intermediates such as the PSMC4-PSMC5-PAAF1 complex. A missense mutant of HERC1 that causes neurodegeneration in mice was impaired in the recognition and ubiquitination of the PSMC5-PAAF1 complex. Thus, proteasome assembly factors can serve as adaptors for ubiquitin ligases to facilitate elimination of unassembled intermediates and maintain protein homeostasis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Calmodulina/metabolismo , Humanos , Células MCF-7 , Ratones , Mutación , Mutación Missense , Enfermedades Neurodegenerativas/genética , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
2.
ACS Omega ; 5(1): 822-831, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31956833

RESUMEN

Polo-like kinase 1 (PLK1) is a key regulator of mitosis and a recognized drug target for cancer therapy. Inhibiting the polo-box domain of PLK1 offers potential advantages of increased selectivity and subsequently reduced toxicity compared with targeting the kinase domain. However, many if not all existing polo-box domain inhibitors have been shown to be unsuitable for further development. In this paper, we describe a novel compound series, which inhibits the protein-protein interactions of PLK1 via the polo-box domain. We combine high throughput screening with molecular modeling and computer-aided design, synthetic chemistry, and cell biology to address some of the common problems with protein-protein interaction inhibitors, such as solubility and potency. We use molecular modeling to improve the solubility of a hit series with initially poor physicochemical properties, enabling biophysical and biochemical characterization. We isolate and characterize enantiomers to improve potency and demonstrate on-target activity in both cell-free and cell-based assays, entirely consistent with the proposed binding model. The resulting compound series represents a promising starting point for further progression along the drug discovery pipeline and a new tool compound to study kinase-independent PLK functions.

3.
ACS Med Chem Lett ; 10(9): 1322-1327, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31531204

RESUMEN

Many small molecule inhibitors of the cMET receptor tyrosine kinase have been evaluated in clinical trials for the treatment of cancer and resistance-conferring mutations of cMET are beginning to be reported for a number of such compounds. There is now a need to understand specific cMET mutations at the molecular level, particularly concerning small molecule recognition. Toward this end, we report here the first crystal structures of the recent clinically observed resistance-conferring D1228V cMET mutant in complex with small molecule inhibitors, along with a crystal structure of wild-type cMET bound by the clinical compound savolitinib and supporting cellular, biochemical, and biophysical data. Our findings indicate that the D1228V alteration induces conformational changes in the kinase, which could have implications for small molecule inhibitor design. The data we report here increases our molecular understanding of the D1228V cMET mutation and provides insight for future inhibitor design.

4.
SLAS Discov ; 24(2): 121-132, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543471

RESUMEN

Methods to measure cellular target engagement are increasingly being used in early drug discovery. The Cellular Thermal Shift Assay (CETSA) is one such method. CETSA can investigate target engagement by measuring changes in protein thermal stability upon compound binding within the intracellular environment. It can be performed in high-throughput, microplate-based formats to enable broader application to early drug discovery campaigns, though high-throughput forms of CETSA have only been reported for a limited number of targets. CETSA offers the advantage of investigating the target of interest in its physiological environment and native state, but it is not clear yet how well this technology correlates to more established and conventional cellular and biochemical approaches widely used in drug discovery. We report two novel high-throughput CETSA (CETSA HT) assays for B-Raf and PARP1, demonstrating the application of this technology to additional targets. By performing comparative analyses with other assays, we show that CETSA HT correlates well with other screening technologies and can be applied throughout various stages of hit identification and lead optimization. Our results support the use of CETSA HT as a broadly applicable and valuable methodology to help drive drug discovery campaigns to molecules that engage the intended target in cells.


Asunto(s)
Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento/métodos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Temperatura , Línea Celular Tumoral , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo
5.
Cell Chem Biol ; 24(8): 1017-1028.e7, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28807782

RESUMEN

Mutations activating KRAS underlie many forms of cancer, but are refractory to therapeutic targeting. Here, we develop Poloppin, an inhibitor of protein-protein interactions via the Polo-box domain (PBD) of the mitotic Polo-like kinases (PLKs), in monotherapeutic and combination strategies to target mutant KRAS. Poloppin engages its targets in biochemical and cellular assays, triggering mitotic arrest with defective chromosome congression. Poloppin kills cells expressing mutant KRAS, selectively enhancing death in mitosis. PLK1 or PLK4 depletion recapitulates these cellular effects, as does PBD overexpression, corroborating Poloppin's mechanism of action. An optimized analog with favorable pharmacokinetics, Poloppin-II, is effective against KRAS-expressing cancer xenografts. Poloppin resistance develops less readily than to an ATP-competitive PLK1 inhibitor; moreover, cross-sensitivity persists. Poloppin sensitizes mutant KRAS-expressing cells to clinical inhibitors of c-MET, opening opportunities for combination therapy. Our findings exemplify the utility of small molecules modulating the protein-protein interactions of PLKs to therapeutically target mutant KRAS-expressing cancers.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Mitosis , Estructura Molecular , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Quinasa Tipo Polo 1
6.
Sci Rep ; 6: 28528, 2016 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-27339427

RESUMEN

The essential mitotic kinase Aurora A (AURKA) is controlled during cell cycle progression via two distinct mechanisms. Following activation loop autophosphorylation early in mitosis when it localizes to centrosomes, AURKA is allosterically activated on the mitotic spindle via binding to the microtubule-associated protein, TPX2. Here, we report the discovery of AurkinA, a novel chemical inhibitor of the AURKA-TPX2 interaction, which acts via an unexpected structural mechanism to inhibit AURKA activity and mitotic localization. In crystal structures, AurkinA binds to a hydrophobic pocket (the 'Y pocket') that normally accommodates a conserved Tyr-Ser-Tyr motif from TPX2, blocking the AURKA-TPX2 interaction. AurkinA binding to the Y- pocket induces structural changes in AURKA that inhibit catalytic activity in vitro and in cells, without affecting ATP binding to the active site, defining a novel mechanism of allosteric inhibition. Consistent with this mechanism, cells exposed to AurkinA mislocalise AURKA from mitotic spindle microtubules. Thus, our findings provide fresh insight into the catalytic mechanism of AURKA, and identify a key structural feature as the target for a new class of dual-mode AURKA inhibitors, with implications for the chemical biology and selective therapeutic targeting of structurally related kinases.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica/efectos de los fármacos , Huso Acromático/efectos de los fármacos
7.
PLoS One ; 10(2): e0118002, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25679396

RESUMEN

LSD1, a lysine-specific histone demethylase, is overexpressed in several types of cancers and linked to poor outcomes. In breast cancer, the significance of LSD1 overexpression is not clear. We have performed an in silico analysis to assess the relationship of LSD1 expression to clinical outcome. We demonstrate that LSD1 overexpression is a poor prognostic factor in breast cancer, especially in basal-like breast cancer, a subtype of breast cancer with aggressive clinical features. This link is also observed in samples of triple negative breast cancer. Interestingly, we note that overexpression of LSD1 correlates with down-regulation of BRCA1 in triple negative breast cancer. This phenomenon is also observed in in vitro models of basal-like breast cancer, and is associated with an increased sensitivity to PARP inhibitors. We propose therefore that high expression levels of the demethylase LSD1 is a potential prognostic factor of poor outcome in basal-like breast cancer, and that PARP inhibition may be a therapeutic strategy of interest in this poor prognostic subtype with overexpression of LSD1.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Resistencia a Antineoplásicos/genética , Expresión Génica , Histona Demetilasas/genética , Neoplasias Basocelulares/genética , Neoplasias Basocelulares/mortalidad , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica , Histona Demetilasas/metabolismo , Humanos , Inmunohistoquímica , Neoplasias Basocelulares/tratamiento farmacológico , Neoplasias Basocelulares/patología , Pronóstico , ARN Mensajero , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad
8.
Oncotarget ; 6(6): 3825-39, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25686825

RESUMEN

PARP inhibitors are a class of promising anti-cancer drugs, with proven activity in BRCA mutant cancers. However, as with other targeted agents, treatment with PARP inhibitors generates acquired resistance within these tumors. The mechanism of this acquired resistance is poorly understood. We established cell lines that are resistant to PARP inhibitor by continuous treatment with the drug, and then used RNA sequencing to compare gene expression. Pathway analysis on the RNA sequencing data indicates that NF-κB signaling is preferentially up-regulated in PARP inhibitor-resistant cells, and that knockdown of core components in NF-κB signaling reverses the sensitivity to PARP inhibitor in resistant cells. Of therapeutic relevance, we show that PARP inhibitor-resistant cells are sensitive to an NF-κB inhibitor in comparison to their parental controls. Malignancies with up-regulation of NF-κB are sensitive to bortezomib, a proteasome inhibitor that is currently used in the clinic. We also show that treatment with bortezomib results in cell death in the PARP inhibitor-resistant cells, but not in parental cells. Therefore we propose that up-regulation of NF-κB signaling is a key mechanism underlying acquired resistance to PARP inhibition, and that NF-κB inhibition, or bortezomib are potentially effective anti-cancer agents after the acquisition of resistance to PARP inhibitors.


Asunto(s)
FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis/efectos de los fármacos , Secuencia de Bases , Bortezomib/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Genes BRCA1 , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
9.
PLoS Comput Biol ; 6(8)2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20711360

RESUMEN

The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors.


Asunto(s)
Proteínas de Ciclo Celular/química , Simulación de Dinámica Molecular , Fosfopéptidos/química , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Fosfatasas cdc25/química , Sitios de Unión , Humanos , Fosforilación , Fosfotreonina/química , Unión Proteica , Especificidad por Sustrato , Quinasa Tipo Polo 1
10.
J Biol Chem ; 281(36): 26022-8, 2006 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-16829694

RESUMEN

Ribonucleotide reductase class I enzymes consist of two non-identical subunits, R1 and R2, the latter containing a diiron carboxylate center and a stable tyrosyl radical (Tyr*), both essential for catalysis. Catalysis is known to involve highly conserved amino acid residues covering a range of approximately 35 A and a concerted mechanism involving long range electron transfer, probably coupled to proton transfer. A number of residues involved in electron transfer in both the R1 and R2 proteins have been identified, but no direct model has been presented regarding the proton transfer side of the process. Arg265 is conserved in all known sequences of class Ia R2. In this study we have used site-directed mutagenesis to gain insight into the role of this residue, which lies close to the catalytically essential Asp266 and Trp103. Mutants to Arg265 included replacement by Ala, Glu, Gln, and Tyr. All mutants of Arg265 were found to have no or low catalytic activity with the exception of Arg265 to Glu, which shows approximately 40% of the activity of native R2. We also found that the Arg mutants were capable of stable tyrosyl radical generation, with similar kinetics of radical formation and R1 binding as native R2. Our results, supported by molecular modeling, strongly suggest that Arg265 is involved in the proton-coupled electron transfer pathway and may act as a proton mediator during catalysis.


Asunto(s)
Arginina/química , Transporte de Electrón/fisiología , Subunidades de Proteína , Protones , Ribonucleótido Reductasas , Animales , Hierro/metabolismo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxígeno/metabolismo , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...