Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
AIMS Microbiol ; 10(1): 161-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525036

RESUMEN

Desert soil hosts many microorganisms, whose activities are essential from an ecological viewpoint. Moreover, they are of great anthropic interest. The knowledge of extreme environments microbiomes may be beneficial for agriculture, technology, and human health. In this study, 11 Arthrobacter strains from topsoil samples collected from the Great Gobi A Strictly Protected Area in the Gobi Desert, were characterized by a combination of different techniques. The phylogenetic analysis, performed using their 16S rDNA sequences and the most similar Arthrobacter sequences found in databases, revealed that most of them were close to A. crystallopoietes, while others joined a sister group to the clade formed by A. humicola, A. pascens, and A. oryzae. The resistance of each strain to different antibiotics, heavy-metals, and NaCl was also tested as well as the inhibitory potential against human pathogens (i.e., Burkholderia ssp., Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus ssp.) via cross-streaking, to check the production of metabolites with antimicrobial activity. Data obtained revealed that all strains were resistant to heavy metals and were able to strongly interfere with the growth of many of the human pathogens tested. The volatile organic compounds (VOCs) profile of the 11 Arthrobacter strains was also analyzed. A total of 16 different metabolites were found, some of which were already known for having an inhibitory action against different Gram-positive and Gram-negative bacteria. Isolate MS-3A13, producing the highest quantity of VOCs, is the most efficient against Burkholderia cepacia complex (Bcc), K. pneumoniae, and coagulase-negative Staphylococci (CoNS) strains. This work highlights the importance of understanding microbial populations' phenotypical characteristics and dynamics in extreme environments to uncover the antimicrobial potential of new species and strains.

2.
Microorganisms ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38399724

RESUMEN

Understanding how microbial communities survive in extreme environmental pressure is critical for interpreting ecological patterns and microbial diversity. Great Gobi A Strictly Protected Area represents an intriguing model for studying the bacterial community since it is a protected and intact wild area of the Mongolian desert. In this work, the composition of a bacterial community of the soil from four oases was characterized by extracting total DNA and sequencing through the Illumina NovaSeq platform. In addition, the soil's chemical and physical properties were determined, and their influence on shaping the microbial communities was evaluated. The results showed a high variability of bacterial composition among oases. Moreover, combining specific chemical and physical parameters significantly shapes the bacterial community among oases. Data obtained suggested that the oases were highly variable in physiochemical parameters and bacterial communities despite the similar extreme climate conditions. Moreover, core functional microbiome were constituted by aerobic chemoheterotrophy and chemoheterotrophy, mainly contributed by the most abundant bacteria, such as Actinobacteriota, Pseudomonadota, and Firmicutes. This result supposes a metabolic flexibility for sustaining life in deserts. Furthermore, as the inhabitants of the extreme regions are likely to produce new chemical compounds, isolation of key taxa is thus encouraged.

3.
Curr Zool ; 69(6): 670-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876635

RESUMEN

The mechanisms of interactions between apex and smaller carnivores may range from competition to facilitation. Conversely, interactions between predators and prey are mainly driven by the prey reducing the likelihood of encounters with predators. In this study, we investigated (1) the spatiotemporal interactions between an apex (the snow leopard) and a meso-predator (the red fox), and (2) the temporal interactions between the snow leopard and its potential prey (Siberian ibex, argali, Asian wild ass, Tolai hare) through camera trapping in the Mongolian Great Gobi-A. The probability of occurrence for the red fox was higher in the presence of the snow leopard than in its absence. Moreover, the red fox activity pattern matched that of the snow leopard, with both species mostly active at sunset. This positive spatiotemporal interaction suggests that the presence of the snow leopard may be beneficial for the red fox in terms of scavenging opportunities. However, other explanations may also be possible. Amongst prey, the Siberian ibex and the argali were mainly active during the day, whereas the Asian wild ass and the Tolai hare were more nocturnal. These findings suggest that potential prey (especially the Siberian ibex and the argali) may shape their behavior to decrease the opportunity for encounters with the snow leopard. Our results have revealed complex interactions between apex and smaller predators and between apex predator and its potential prey.

4.
Front Zool ; 18(1): 25, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001162

RESUMEN

BACKGROUND: Animal communities have complex patterns of ecological segregation at different levels according to food resources, habitats, behavior, and activity patterns. Understanding these patterns among the community is essential for the conservation of the whole ecosystem. However, these networks are difficult to study nowadays, due to anthropic disturbances and local extinctions, making it difficult to conclude if segregation patterns are natural or human-induced. We studied ecological segregation in a community of large and mid-sized mammals in the Great Gobi Desert, a remote arid area free from recent extinctions and human disturbances. Activity patterns of 10 sympatric mammal species were monitored around 6 waterholes through camera-trapping over a two-year period, and analyzed them primarily through circular statistics. RESULTS: Complex patterns of spatial, seasonal, and daily segregation were found. Overlap in seasonal activity was detected in only 3 of the 45 possible pairs of species. Four species used the waterholes all-year-round, while others peaked their activity during different periods. The Bactrian camel showed continuous daily activity, the grey wolf had bimodal activity, and the argali and Siberian ibex were diurnal, while the others had nocturnal peaks during different hours. Daily and spatial overlap were both detected in only 6 of the 45 pairs. Only one species pair (snow leopard and Eurasian lynx) showed an overlap at two levels: seasonal and daily. Climate and moon phase significantly affected the activity of certain species. CONCLUSIONS: Altogether, the results showed complex patterns of ecological segregation at different levels in the use of the key resource in arid environments: waterholes. These results are important for understanding the biology of these species under natural conditions, as well as potential changes in altered ecosystems, and may help to design conservation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...