Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 868454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118570

RESUMEN

Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010-20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials' size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.

2.
Membranes (Basel) ; 12(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36005692

RESUMEN

Polyaniline (PANI), which is a member of the family of electrically conducting polymers, has been widely discussed as a potential membrane for wastewater treatment. Although a steady growth in PANI literature was observed, analyzing PANI literature quantitatively is still a novelty. The main aim of this study is to unearth the current research status, global trends, and evolution of PANI membranes literature and their use in water treatment applications over time. For this purpose, a scientometric study was performed consisting of bibliometric and bibliographic analysis. A total of 613 entities were extracted from Web of Science published during the last 50 years and were analyzed to map trends based on leading peer-reviewed journals, publication records, leading research disciplines, countries, and organizations. The study shows that the number of annual publications increased exponentially from 2005 to 2020 and is expected to keep increasing in the current decade. The Journal of Membrane Science published the highest number of articles and was identified as the most-cited journal in the field. China, India, and the USA were observed as the top three research hubs. The top-ranked authors in the field were Wang, Jixiao, and Wang, Zhi. To find research trends, four different clusters of keywords were generated and analyzed. The top five most frequent keywords turn out to be polyaniline, water, performance, membranes, and nanoparticles. The analysis suggests that the application of nanotechnology for modifying PANI membranes (using nanoparticles, nanotubes, and graphene specifically) is the future of this field. This study elucidates the research streamline of the field that may serve as a quick reference for early career researchers and industries exploring this field.

3.
Membranes (Basel) ; 12(8)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36005713

RESUMEN

The complexity of removing boron compounds from aqueous systems has received serious attention among researchers and inventors in the water treating industry. This is due to the higher level of boron in the aquatic ecosystem, which is caused by the geochemical background and anthropogenic factors. The gradual increase in the distribution of boron for years can become extremely toxic to humans, terrestrial organisms and aquatic organisms. Numerous methods of removing boron that have been executed so far can be classified under batch adsorption, membrane-based processes and hybrid techniques. Conventional water treatments such as coagulation, sedimentation and filtration do not significantly remove boron, and special methods would have to be installed in order to remove boron from water resources. The blockage of membrane pores by pollutants in the available membrane technologies not only decreases their performance but can make the membranes prone to fouling. Therefore, the surface-modifying flexibility in adsorptive membranes can serve as an advantage to remove boron from water resources efficiently. These membranes are attractive because of the dual advantage of adsorption/filtration mechanisms. Hence, this review is devoted to discussing the capabilities of an adsorptive membrane in removing boron. This study will mainly highlight the issues of commercially available adsorptive membranes and the drawbacks of adsorbents incorporated in single-layered adsorptive membranes. The idea of layering adsorbents to form a highly adsorptive dual-layered membrane for boron removal will be proposed. The future prospects of boron removal in terms of the progress and utilization of adsorptive membranes along with recommendations for improving the techniques will also be discussed further.

4.
Materials (Basel) ; 15(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35888518

RESUMEN

Due to their simple synthesis method and excellent properties, such as superior adsorption and regeneration capabilities, with a large surface area and tunable pores, metal-organic frameworks (MOFs) have emerged as a suitable option for wastewater treatment. Although an exponential growth in MOF literature has been observed in recent years, conducting a quantitative literature analysis of MOF application in wastewater treatment is a novelty. To fill this gap, a total of 1187 relevant publications were extracted from the Web of Science, published during the last 50 years, and analyzed using bibliometric and content analysis techniques. A bibliometric analysis was conducted to reveal growing publication trends, leading journals, prolific countries, and organizations; whereas, a content analysis was used to highlight key research themes and hot topics in this field. The analyses revealed that there is a strong international collaboration among authors, countries, and organizations. Chemical Engineering Journal, Journal of Hazardous Materials, and Journal of Environmental Chemical Engineering are the most prolific journals in this field. Furthermore, the use of MOFs for removing antibiotics from wastewater was identified as a recent hot topic. In addition, performance enhancements of MOFs, in terms of a higher adsorption capacity and water stability, were identified as topics of great interest. To cater to these issues, the application of graphene, graphene oxides, nanoparticles, and quantum dots was also observed in the research fronts in this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...