Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(4): e0273960, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37093800

RESUMEN

The dermis is the portal of entry for most vector-transmitted pathogens, making the host's immune response at this site critical in mitigating the magnitude of infection. For malaria, antibody-mediated neutralization of Plasmodium parasites in the dermis was recently demonstrated. However, surprisingly little is known about the mechanisms that govern antibody transport into the skin. Since the neonatal Fc receptor (FcRn) has been shown to transcytose IgG into various tissues, we sought to understand its contribution to IgG transport into the skin and antibody-mediated inhibition of Plasmodium parasites following mosquito bite inoculation. Using confocal imaging, we show that the transport of an anti-Langerin mAb into the skin occurs but is only partially reduced in mice lacking FcRn. To understand the relevance of FcRn in the context of malaria infection, we use the rodent parasite Plasmodium berghei and show that passively-administered anti-malarial antibody in FcRn deficient mice, does not reduce parasite burden to the same extent as previously observed in wildtype mice. Overall, our data suggest that FcRn plays a role in the transport of IgG into the skin but is not the major driver of IgG transport into this tissue. These findings have implications for the rational design of antibody-based therapeutics for malaria as well as other vector-transmitted pathogens.


Asunto(s)
Inmunoglobulina G , Receptores Fc , Ratones , Animales , Antígenos de Histocompatibilidad Clase I , Piel
2.
Front Med (Lausanne) ; 8: 760236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869463

RESUMEN

Krabbe Disease (KD) is an autosomal metabolic disorder that affects both the central and peripheral nervous systems. It is caused by a functional deficiency of the lysosomal enzyme, galactocerebrosidase (GALC), resulting in an accumulation of the toxic metabolite, psychosine. Psychosine accumulation affects many different cellular pathways, leading to severe demyelination. Although there is currently no effective therapy for Krabbe disease, recent gene therapy-based approaches in animal models have indicated a promising outlook for clinical treatment. This review highlights recent findings in the pathogenesis of Krabbe disease, and evaluates AAV-based gene therapy as a promising strategy for treating this devastating pediatric disease.

4.
Heliyon ; 6(10): e05140, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33083608

RESUMEN

The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.

5.
PLoS Pathog ; 16(5): e1008181, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453765

RESUMEN

Plasmodium sporozoites are the infective stage of the malaria parasite. Though this is a bottleneck for the parasite, the quantitative dynamics of transmission, from mosquito inoculation of sporozoites to patent blood-stage infection in the mammalian host, are poorly understood. Here we utilize a rodent model to determine the probability of malaria infection after infectious mosquito bite, and consider the impact of mosquito parasite load, blood-meal acquisition, probe-time, and probe location, on infection probability. We found that infection likelihood correlates with mosquito sporozoite load and, to a lesser degree, the duration of probing, and is not dependent upon the mosquito's ability to find blood. The relationship between sporozoite load and infection probability is non-linear and can be described by a set of models that include a threshold, with mosquitoes harboring over 10,000 salivary gland sporozoites being significantly more likely to initiate a malaria infection. Overall, our data suggest that the small subset of highly infected mosquitoes may contribute disproportionally to malaria transmission in the field and that quantifying mosquito sporozoite loads could aid in predicting the force of infection in different transmission settings.


Asunto(s)
Malaria/transmisión , Esporozoítos/metabolismo , Animales , Anopheles/metabolismo , Anopheles/parasitología , Conducta Alimentaria , Femenino , Malaria/parasitología , Ratones , Mosquitos Vectores/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidad , Glándulas Salivales/parasitología , Esporozoítos/fisiología
6.
Immunity ; 51(4): 766-779.e17, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31495665

RESUMEN

Increasing evidence indicates CD4+ T cells can recognize cancer-specific antigens and control tumor growth. However, it remains difficult to predict the antigens that will be presented by human leukocyte antigen class II molecules (HLA-II), hindering efforts to optimally target them therapeutically. Obstacles include inaccurate peptide-binding prediction and unsolved complexities of the HLA-II pathway. To address these challenges, we developed an improved technology for discovering HLA-II binding motifs and conducted a comprehensive analysis of tumor ligandomes to learn processing rules relevant in the tumor microenvironment. We profiled >40 HLA-II alleles and showed that binding motifs were highly sensitive to HLA-DM, a peptide-loading chaperone. We also revealed that intratumoral HLA-II presentation was dominated by professional antigen-presenting cells (APCs) rather than cancer cells. Integrating these observations, we developed algorithms that accurately predicted APC ligandomes, including peptides from phagocytosed cancer cells. These tools and biological insights will enable improved HLA-II-directed cancer therapies.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Vacunas contra el Cáncer/inmunología , Mapeo Epitopo/métodos , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Inmunoterapia/métodos , Espectrometría de Masas/métodos , Neoplasias/terapia , Algoritmos , Alelos , Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Conjuntos de Datos como Asunto , Antígenos HLA/genética , Antígenos HLA-D/metabolismo , Humanos , Neoplasias/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Programas Informáticos
7.
mBio ; 9(6)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459199

RESUMEN

Plasmodium sporozoites are injected into the skin as mosquitoes probe for blood. From here, they migrate through the dermis to find blood vessels which they enter in order to be rapidly carried to the liver, where they invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic stage. Once sporozoites enter the blood circulation, they are found in hepatocytes within minutes. In contrast, sporozoite exit from the inoculation site resembles a slow trickle and occurs over several hours. Thus, sporozoites spend the majority of their extracellular time at the inoculation site, raising the hypothesis that this is when the malarial parasite is most vulnerable to antibody-mediated destruction. Here, we investigate this hypothesis and demonstrate that the neutralizing capacity of circulating antibodies is greater at the inoculation site than in the blood circulation. Furthermore, these antibodies are working, at least in part, by impacting sporozoite motility at the inoculation site. Using actively and passively immunized mice, we found that most parasites are either immobilized at the site of injection or display reduced motility, particularly in their net displacement. We also found that antibodies severely impair the entry of sporozoites into the bloodstream. Overall, our data suggest that antibodies targeting the migratory sporozoite exert a large proportion of their protective effect at the inoculation site.IMPORTANCE Studies in experimental animal models and humans have shown that antibodies against Plasmodium sporozoites abolish parasite infectivity and provide sterile immunity. While it is well documented that these antibodies can be induced after immunization with attenuated parasites or subunit vaccines, the mechanisms by and location in which they neutralize parasites have not been fully elucidated. Here, we report studies indicating that these antibodies display a significant portion of their protective effect in the skin after injection of sporozoites and that one mechanism by which they work is by impairing sporozoite motility, thus diminishing their ability to reach blood vessels. These results suggest that immune protection against malaria begins at the earliest stages of parasite infection and emphasize the need of performing parasite challenge in the skin for the evaluation of protective immunity.


Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Vasos Sanguíneos/parasitología , Dermis/inmunología , Dermis/parasitología , Esporozoítos/inmunología , Animales , Anopheles/parasitología , Anticuerpos Neutralizantes/inmunología , Femenino , Hepatocitos/parasitología , Inmunización , Inmunización Pasiva , Malaria/sangre , Malaria/parasitología , Ratones Endogámicos C57BL , Plasmodium berghei/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...