Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Sci (Lond) ; 137(14): 1027-1048, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37401489

RESUMEN

Intein sequences self-excise from precursor proteins to generate functional proteins in various organisms. Thus, regulation of intein splicing at the host-pathogen interface can determine the fate of infection by controlling generation of essential proteins in microbes. For instance, Mycobacterium tuberculosis (Mtu) SufB intein splicing is crucial for the functionality of SUF complex. This multiprotein system is the sole pathway for [Fe-S] cluster biogenesis in mycobacteria during oxidative stress and Fe starvation. Although metal toxicity and metal starvation are components of host immunity, correlation of metal stress to Mtu SufB intein splicing is missing till date. Current study examines the splicing and N-terminal cleavage reactions of Mtu SufB precursor protein in presence of micronutrient metal ions like Zn+2, Cu+2, and Fe+3/+2. A known intein splicing inhibitor Pt+4 was also tested to support its proposed role as an anti-TB agent. Mtu SufB precursor protein exhibited significant attenuation of splicing and N-terminal cleavage reactions across different concentration ranges for Pt+4, Cu+2, Zn+2, while Fe+3 interaction resulted in precursor accumulation. UV-Vis spectroscopy, inductively coupled plasma-optical emission spectroscopy (ICP-OES), Tryptophan fluorescence assay, and dynamic light scattering (DLS) techniques analyzed metal-protein interaction. Mutagenesis experiments and Ellman's assay identified plausible metal co-ordination sites within Mtu SufB protein. Analyzing the metal effect on Mtu SufB splicing may provide elemental information about the fate of mycobacterial infection, and a probable mechanism to attenuate intracellular survival of Mtu. Current research hints at the host regulatory mechanism on SufB splicing in its native environment and a likely target for developing next-generation anti-TB drugs.


Asunto(s)
Inteínas , Mycobacterium tuberculosis , Inteínas/genética , Mycobacterium tuberculosis/genética , Empalme de Proteína
2.
Artículo en Inglés | MEDLINE | ID: mdl-34769722

RESUMEN

COVID-19 remains a matter of global public health concern. Previous research suggested the association between local environmental factors and viral transmission. We present a multivariate observational analysis of SARS-CoV-2 transmission in the state of Odisha, India, hinting at a seasonal activity. We aim to investigate the demographic characteristics of COVID-19 in the Indian state of Odisha for two specific timelines in 2020 and 2021. For a comparative outlook, we chose similar datasets from the state of New York, USA. Further, we present a critical analysis pertaining to the effects of environmental factors and the emergence of variants on SARS-CoV-2 transmission and persistence. We assessed the datasets for confirmed cases, death, age, and gender for 29 February 2020 to 31 May 2020, and 1 March 2021 to 31 May 2021. We determined the case fatalities, crude death rates, sex ratio, and incidence rates for both states along with monthly average temperature analysis. A yearlong epi-curve analysis was conducted to depict the coronavirus infection spread pattern in the respective states. The Indian state of Odisha reported a massive 436,455 confirmed cases and 875 deaths during the 2021 timeline as compared to a mere 2223 cases and 7 deaths during the 2020 timeline. We further discuss the demographic and temperature association of SARS-CoV-2 transmission during early 2020 and additionally comment on the variant-associated massive rise in cases during 2021. Along with the rapid rise of variants, the high population density and population behavior seem to be leading causes for the 2021 pandemic, whereas factors such as age group, gender, and average local temperature were prominent during the 2020 spread. A seasonal occurrence of SARS-CoV-2 transmission is also observed from the yearlong epidemiological plot. The recent second wave of COVID-19 is a lesson that emphasizes the significance of continuous epidemiological surveillance to predict the relative risk of viral transmission for a specific region.


Asunto(s)
COVID-19 , SARS-CoV-2 , Análisis de Datos , Humanos , India/epidemiología , Pandemias
3.
Biochimie ; 185: 53-67, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33727137

RESUMEN

Inteins are intervening polypeptides that interrupt the functional domains of several important proteins across the three domains of life. Inteins excise themselves from the precursor protein, ligating concomitant extein residues in a process called protein splicing. Post-translational auto-removal of inteins remain critical for the generation of active proteins. The perspective of inteins in science is a robust field of research, however fundamental studies centralized upon splicing regulatory mechanism are imperative for addressing more intricate issues. Controlled engineering of intein splicing has many applications; intein inhibition can facilitate novel drug design, while activation of intein splicing is exploited in protein purification. This paper provides a comprehensive review of the past and recent advances in the splicing regulation via metal-intein interaction. We compare the behavior of different metal ions on diverse intein systems. Though metals such as Zn, Cu, Pt, Cd, Co, Ni exhibit intein inhibitory effect heterogeneously on different inteins, divalent metal ions such as Ca and Mg fail to do so. The observed diversity in the metal-intein interaction arises mostly due to intein polymorphism and variations in atomic structure of metals. A mechanistic understanding of intein regulation by metals in native as well as synthetically engineered intein systems may yield potent intein inhibitors via direct or indirect approach.


Asunto(s)
Inteínas , Metales/química , Empalme de Proteína , Metales/metabolismo
4.
Front Bioeng Biotechnol ; 9: 773303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004641

RESUMEN

Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.

5.
Microorganisms ; 8(12)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339089

RESUMEN

Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...