Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 155: 543-550, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32240735

RESUMEN

The α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of ß-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood. Here, we established a fluorescence-based model for studying the end-parts of αSN to decipher the structural aspects of aggregates during the fibrillization. Our model proved highly sensitive to the events at the early stage of the fibrillization process, which are hardly detectable with routine techniques. Combining fluorescent and PAGE analysis, we found different oligomeric aggregates in the nucleation phase of fibrillization with different sensitivity to SDS and different structures based on αSN termini. Moreover, we found that these oligomers are highly dynamic: after reaching peak levels during fibrillization, they decline and eventually disappear, suggesting their transformation into other αSN aggregated species. These findings shed light on the structural features of various αSN aggregates and their dynamics in synucleinopathies.


Asunto(s)
Amiloide/química , Proteínas Mutantes/química , Mutación , alfa-Sinucleína/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Parkinsons Dis ; 2016: 6219249, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313947

RESUMEN

α-Synuclein (α-Syn) fibrillation links with Parkinson's disease (PD) and several related syndromes. It is believed that exposure to the factors which promote fibrillation may induce and progress such neurodegenerative diseases (NDs). Herein, the effects of some wildly used essential oils including Myrtus communis (M. communis) on α-Syn fibrillation were examined. M. communis particularly increased α-Syn fibrillation in a concentration dependent manner. Given that applications of M. communis are very extensive in Asian societies, especially Zoroastrians, this study was extended towards its role on α-Syn fibrillation/cytotoxicity. By using a unilamellar vesicle, it was shown that the aggregated species with tendency to perturb membrane were increased in the presence of M. communis. In this regard, the cytotoxicity of α-Syn on SH-SH5Y cells was also increased significantly. Inappropriately, the effects of fibrillation inhibitors, baicalein and cuminaldehyde, were modulated in the presence of M. communis. However, major components of M. communis did not induce fibrillation and also the effect of M. communis was limited on other fibrinogenic proteins. Assuming that essential oils have the ability to pass through the blood brain barrier (BBB) along with the popular attention on aromatherapy for the incurable ND, these findings suggest an implementation of fibrillation tests for essential oils.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...