Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(12): e2300294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821361

RESUMEN

Natural products belonging to different chemical classes have been established as a promising source of novel anticancer drugs. Several low-molecular-weight compounds from the classes of monoterpenes, phenylpropanoids, and flavonoids were shown to possess anticancer activities in previous studies. In this work, over 20 semisynthetic derivatives of molecules belonging to these classes, namely thymol, eugenol, and 6-hydroxyflavanone were synthesized and tested for their cytotoxicity against two human cancer cell lines, namely AGS cells (gastric adenocarcinoma) and A549 cells (human lung carcinoma). An initial screening based on viability assessment was performed to identify the most cytotoxic compounds at 100 µM. The results evidenced that two 6-hydroxyflavanone derivatives were the most cytotoxic among the compounds tested, being selected for further studies. These derivatives displayed enhanced toxicity when compared with their natural counterparts. Moreover, the lactate dehydrogenase (LDH) assay showed that the loss of cell viability was not accompanied by a loss of membrane integrity, thus ruling out a necrotic process. Morphological studies with AGS cells demonstrated chromatin condensation compatible with apoptosis, confirmed by the activation of caspase 3/7. Furthermore, a viability assay on a noncancer human embryonic lung fibroblast cell line (MRC-5) confirmed that these two derivatives possess selective anticancer activity.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Línea Celular Tumoral , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Células A549 , Neoplasias Pulmonares/patología , Apoptosis , Proliferación Celular
2.
RSC Adv ; 11(54): 34024-34035, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497284

RESUMEN

New compounds with potential insecticide activity were synthesized by structural modifications performed in the monoterpenoid phenolic moieties of carvacrol and thymol, resulting in a set of derivatives with the ether function containing the propyl, chloropropyl or hydroxypropyl chains, as well as a bicyclic ether with an unsaturated chain containing a carboxylic acid terminal. In addition, an analogue of carvacrol and thymol isomers bearing methoxyl, 1-hydroxyethyl and (3-chlorobenzoyl)oxy, instead of the three original methyl groups, was also synthesized. Several structural changes that resulted in diminished insecticide activity have been identified, but two significantly active molecules have been synthesized, one of them being less toxic to human cells than the naturally-derived starting materials. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these active molecules likely target the insect odorant binding proteins and/or acetylcholinesterase and are able to form stable complexes. For the most promising compounds, nanoencapsulation assays were carried out in liposomes of egg phosphatidylcholine/cholesterol (7 : 3) prepared by both thin film hydration and ethanolic injection methods. The compound-loaded liposomes were generally monodisperse and with sizes smaller than or around 200 nm. The thin film hydration method allowed high encapsulation efficiencies (above 85%) for both compounds and a delayed release, while for the systems prepared by ethanolic injection the encapsulation efficiency is lower than 50%, but the release is almost complete in two days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...