Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 606(7912): 180-187, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614225

RESUMEN

Mitochondria generate heat due to H+ leak (IH) across their inner membrane1. IH results from the action of long-chain fatty acids on uncoupling protein 1 (UCP1) in brown fat2-6 and ADP/ATP carrier (AAC) in other tissues1,7-9, but the underlying mechanism is poorly understood. As evidence of pharmacological activators of IH through UCP1 and AAC is lacking, IH is induced by protonophores such as 2,4-dinitrophenol (DNP) and cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP)10,11. Although protonophores show potential in combating obesity, diabetes and fatty liver in animal models12-14, their clinical potential for treating human disease is limited due to indiscriminately increasing H+ conductance across all biological membranes10,11 and adverse side effects15. Here we report the direct measurement of IH induced by DNP, FCCP and other common protonophores and find that it is dependent on AAC and UCP1. Using molecular structures of AAC, we perform a computational analysis to determine the binding sites for protonophores and long-chain fatty acids, and find that they overlap with the putative ADP/ATP-binding site. We also develop a mathematical model that proposes a mechanism of uncoupler-dependent IH through AAC. Thus, common protonophoric uncouplers are synthetic activators of IH through AAC and UCP1, paving the way for the development of new and more specific activators of these two central mediators of mitochondrial bioenergetics.


Asunto(s)
Mitocondrias , Translocasas Mitocondriales de ADP y ATP , Protones , Proteína Desacopladora 1 , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteína Desacopladora 1/metabolismo
2.
J Comput Chem ; 43(6): 431-434, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-34921560

RESUMEN

Consistent buckling distortions of a large membrane patch (200 × 200 Å) are observed during molecular dynamics (MD) simulations using the Monte-Carlo (MC) barostat in combination with a hard Lennard-Jones (LJ) cutoff. The buckling behavior is independent of both the simulation engine and the force field but requires the MC barostat-hard LJ cutoff combination. Similar simulations of a smaller patch (90 × 90 Å) do not show buckling, but do show a small, systematic reduction in the surface area accompanied by ~1 Å thickening suggestive of compression. We show that a mismatch in the way potentials and forces are handled in the dynamical equations versus the MC barostat results in a compressive load on the membrane. Moreover, a straightforward application of elasticity theory reveals that a minimal compression of the linear dimensions of the membrane, inversely proportional to the edge length, is required for buckling, explaining this differential behavior. We recommend always using LJ force or potential-switching when the MC barostat is employed to avoid undesirable membrane deformations.


Asunto(s)
Membranas Artificiales , Simulación de Dinámica Molecular , Presión , Modelos Teóricos , Método de Montecarlo
3.
Elife ; 102021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34904568

RESUMEN

Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine-crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ's sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutations distant from the sensor or catalytic site strongly influence PhoQ's ligand-sensitivity as well as the magnitude and direction of the signal. Data from 35 mutants are explained by a semi-empirical three-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively 'kinase-on' conformation, while the HAMP domain favors the 'off' state; when coupled, they create a bistable system responsive to physiological concentrations of Mg2+. Mutations alter signaling by locally modulating domain intrinsic equilibrium constants and interdomain couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.


Asunto(s)
Regulación Alostérica/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Magnesio/metabolismo , Transducción de Señal/efectos de los fármacos , Variación Genética , Genotipo , Modelos Moleculares , Mutación
4.
J Mol Biol ; 433(17): 166995, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33887333

RESUMEN

Leak currents, defined as voltage and time independent flows of ions across cell membranes, are central to cellular electrical excitability control. The K2P (KCNK) potassium channel class comprises an ion channel family that produces potassium leak currents that oppose excitation and stabilize the resting membrane potential in cells in the brain, cardiovascular system, immune system, and sensory organs. Due to their widespread tissue distribution, K2Ps contribute to many physiological and pathophysiological processes including anesthesia, pain, arrythmias, ischemia, hypertension, migraine, intraocular pressure regulation, and lung injury responses. Structural studies of six homomeric K2Ps have established the basic architecture of this channel family, revealed key moving parts involved in K2P function, uncovered the importance of asymmetric pinching and dilation motions in the K2P selectivity filter (SF) C-type gate, and defined two K2P structural classes based on the absence or presence of an intracellular gate. Further, a series of structures characterizing K2P:modulator interactions have revealed a striking polysite pharmacology housed within a relatively modestly sized (~70 kDa) channel. Binding sites for small molecules or lipids that control channel function are found at every layer of the channel structure, starting from its extracellular side through the portion that interacts with the membrane bilayer inner leaflet. This framework provides the basis for understanding how gating cues sensed by different channel parts control function and how small molecules and lipids modulate K2P activity. Such knowledge should catalyze development of new K2P modulators to probe function and treat a wide range of disorders.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/metabolismo , Potasio/metabolismo , Sitios de Unión/fisiología , Humanos , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/metabolismo
5.
Sci Adv ; 6(44)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33127683

RESUMEN

K2P potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric K2Ps is unknown. Here, combining K2P2.1 (TREK-1) x-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and electrophysiology, we uncover unprecedented, asymmetric, potassium-dependent conformational changes that underlie K2P C-type gating. These asymmetric order-disorder transitions, enabled by the K2P heterodimeric architecture, encompass pinching and dilation, disrupt the S1 and S2 ion binding sites, require the uniquely long K2P SF2-M4 loop and conserved "M3 glutamate network," and are suppressed by the K2P C-type gate activator ML335. These findings demonstrate that two distinct C-type gating mechanisms can operate in one channel and underscore the SF2-M4 loop as a target for K2P channel modulator development.

6.
Biol Open ; 7(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30037883

RESUMEN

Although the primary protein sequence of ubiquitin (Ub) is extremely stable over evolutionary time, it is highly tolerant to mutation during selection experiments performed in the laboratory. We have proposed that this discrepancy results from the difference between fitness under laboratory culture conditions and the selective pressures in changing environments over evolutionary timescales. Building on our previous work (Mavor et al., 2016), we used deep mutational scanning to determine how twelve new chemicals (3-Amino-1,2,4-triazole, 5-fluorocytosine, Amphotericin B, CaCl2, Cerulenin, Cobalt Acetate, Menadione, Nickel Chloride, p-Fluorophenylalanine, Rapamycin, Tamoxifen, and Tunicamycin) reveal novel mutational sensitivities of ubiquitin residues. Collectively, our experiments have identified eight new sensitizing conditions for Lys63 and uncovered a sensitizing condition for every position in Ub except Ser57 and Gln62. By determining the ubiquitin fitness landscape under different chemical constraints, our work helps to resolve the inconsistencies between deep mutational scanning experiments and sequence conservation over evolutionary timescales.

7.
Biochemistry ; 52(44): 7753-65, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24090207

RESUMEN

The ultrasensitive, ultrastable bacterial chemosensory array of Escherichia coli and Salmonella typhimurium is representative of the large, conserved family of sensory arrays that control the cellular chemotaxis of motile bacteria and Archaea. The core framework of the membrane-bound array is a lattice assembled from three components: a transmembrane receptor, a cytoplasmic His kinase (CheA), and a cytoplasmic adaptor protein (CheW). Structural studies in the field have revealed the global architecture of the array and complexes between specific components, but much remains to be learned about the essential protein-protein interfaces that define array structure and transmit signals between components. This study has focused on the structure, function, and on-off switching of a key contact between the kinase and adaptor proteins in the working, membrane-bound array. Specifically, the study addressed interface 1 in the putative kinase-adaptor ring where subdomain 1 of the kinase regulatory domain contacts subdomain 2 of the adaptor protein. Two independent approaches, disulfide mapping and site-directed Trp and Ala mutagenesis, were employed (i) to test the structural model of interface 1 and (ii) to investigate its functional roles in both stable kinase incorporation and receptor-regulated kinase on-off switching. Studies were conducted in functional, membrane-bound arrays or in live cells. The findings reveal that crystal structures of binary and ternary complexes accurately depict the native interface in its kinase-activating on state. Furthermore, the findings indicate that at least part of the interface becomes less closely packed in its kinase-inhibiting off state. Together, the evidence shows the interface has a dual structural and signaling function that is crucial for incorporation of the stable kinase into the array, for kinase activation in the array on state, and likely for attractant-triggered kinase on-off switching. A model is presented that describes the concerted transmission of a conformational signal among the receptor, the kinase regulatory domain, and the adaptor protein. In principle, this signal could spread out into the surrounding array via the kinase-adaptor ring, employing a series of alternating frozen-dynamic transitions that transmit low-energy attractant signals long distances.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Disulfuros/química , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Salmonella typhimurium/enzimología , Proteínas Bacterianas/genética , Quimiotaxis , Dimerización , Disulfuros/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutagénesis , Proteínas Quinasas/genética , Salmonella typhimurium/química , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA