Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461511

RESUMEN

Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its profound invasiveness and molecular heterogeneity. The mesenchymal (MES) transcriptomic subtype is frequently associated with therapy resistance, rapid recurrence, and increased tumor-associated macrophages. Notably, activation of the NF-κB pathway and alterations in the PTEN gene are both associated with this malignant transition. Although PTEN aberrations have been shown to be associated with enhanced NF-κB signaling, the relationships between PTEN, NF-κB and MES transition are poorly understood in GBM. Here, we show that PTEN regulates the chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived glioblastoma stem cells and CRISPR gene editing of the RELA gene, we demonstrate a crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for MES gene expression and GBM cell invasion upon PTEN loss. Remarkably, we found that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to MES gene promoters and their expression. Furthermore, loss of BRD2 results in the loss of MES signature, accompanied by an enrichment of proneural signature and enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NFκB/BRD2 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal gene expression, GBM invasion, and therapy resistance in GBM models. This study uncovers the role of hitherto unexplored PTEN-NF-κB-BRD2 pathway in promoting MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as a therapeutic approach to target the MES phenotype in GBM.

2.
Elife ; 112022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222651

RESUMEN

Cellular ATP that is consumed to perform energetically expensive tasks must be replenished by new ATP through the activation of metabolism. Neuronal stimulation, an energetically demanding process, transiently activates aerobic glycolysis, but the precise mechanism underlying this glycolysis activation has not been determined. We previously showed that neuronal glycolysis is correlated with Ca2+ influx, but is not activated by feedforward Ca2+ signaling (Díaz-García et al., 2021a). Since ATP-powered Na+ and Ca2+ pumping activities are increased following stimulation to restore ion gradients and are estimated to consume most neuronal ATP, we aimed to determine if they are coupled to neuronal glycolysis activation. By using two-photon imaging of fluorescent biosensors and dyes in dentate granule cell somas of acute mouse hippocampal slices, we observed that production of cytoplasmic NADH, a byproduct of glycolysis, is strongly coupled to changes in intracellular Na+, while intracellular Ca2+ could only increase NADH production if both forward Na+/Ca2+ exchange and Na+/K+ pump activity were intact. Additionally, antidromic stimulation-induced intracellular [Na+] increases were reduced >50% by blocking Ca2+ entry. These results indicate that neuronal glycolysis activation is predominantly a response to an increase in activity of the Na+/K+ pump, which is strongly potentiated by Na+ influx through the Na+/Ca2+ exchanger during extrusion of Ca2+ following stimulation.


Asunto(s)
Calcio , NAD , Animales , Ratones , NAD/metabolismo , Calcio/metabolismo , Sodio/metabolismo , Glucólisis/fisiología , Intercambiador de Sodio-Calcio/metabolismo , Hipocampo/metabolismo , Adenosina Trifosfato/metabolismo , Colorantes
3.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33555254

RESUMEN

When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.


Asunto(s)
Calcio/metabolismo , Ciclo del Ácido Cítrico , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Citosol/metabolismo , Metabolismo Energético , Femenino , Glucólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Fosforilación Oxidativa , Sodio/metabolismo
4.
Bio Protoc ; 11(24): e4259, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35087918

RESUMEN

Genetically encoded fluorescent biosensors are versatile tools for studying brain metabolism and function in live tissue. The genetic information for these biosensors can be delivered into the brain by stereotaxic injection of engineered adeno-associated viruses (AAVs), which can selectively target different cell types depending on the capsid serotype and/or the viral promoter. Here, we describe a protocol for intracranial injections of two viral vectors encoding the metabolic biosensor Peredox and the calcium biosensor RCaMP1h. When combined with 2-photon microscopy and fluorescence lifetime imaging, this protocol allows the simultaneous quantitative assessment of changes in the cytosolic NADH/NAD+ ratio and the intracellular Ca2+ levels in individual dentate granule cells from acute hippocampal slices. Graphic abstract: Workflow diagram for biosensor expression in the mouse hippocampus using intracranial injections of adeno-associated viruses.

5.
J Neurosci Res ; 97(8): 946-960, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31106909

RESUMEN

Glucose is an essential source of energy for the brain. Recently, the development of genetically encoded fluorescent biosensors has allowed real time visualization of glucose dynamics from individual neurons and astrocytes. A major difficulty for this approach, even for ratiometric sensors, is the lack of a practical method to convert such measurements into actual concentrations in ex vivo brain tissue or in vivo. Fluorescence lifetime imaging provides a strategy to overcome this. In a previous study, we reported the lifetime glucose sensor iGlucoSnFR-TS (then called SweetieTS) for monitoring changes in neuronal glucose levels in response to stimulation. This genetically encoded sensor was generated by combining the Thermus thermophilus glucose-binding protein with a circularly permuted variant of the monomeric fluorescent protein T-Sapphire. Here, we provide more details on iGlucoSnFR-TS design and characterization, as well as pH and temperature sensitivities. For accurate estimation of glucose concentrations, the sensor must be calibrated at the same temperature as the experiments. We find that when the extracellular glucose concentration is in the range 2-10 mM, the intracellular glucose concentration in hippocampal neurons from acute brain slices is ~20% of the nominal external glucose concentration (~0.4-2 mM). We also measured the cytosolic neuronal glucose concentration in vivo, finding a range of ~0.7-2.5 mM in cortical neurons from awake mice.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Espectrometría de Fluorescencia/métodos , Animales , Técnicas Biosensibles/instrumentación , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Thermus thermophilus/genética
6.
Elife ; 72018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368690

RESUMEN

Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased KATP channel activity.


Asunto(s)
Corteza Entorrinal/fisiología , Canales KATP/metabolismo , Neuronas/fisiología , Convulsiones/fisiopatología , Proteína Letal Asociada a bcl/metabolismo , Animales , Ratones , Ratones Noqueados , Proteína Letal Asociada a bcl/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...