Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 226(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278664

RESUMEN

Eight juvenile European seabass were exposed to two thermal ramping protocols with different levels of aerobic activity and tolerance endpoint: the critical thermal maximum for swimming (CTSmax) while exercising aerobically until fatigue and the critical thermal maximum (CTmax) under static conditions until loss of equilibrium (LOE). In the CTSmax protocol, warming caused a profound increase in the rate of oxygen uptake (MO2), culminating in a gait transition from steady aerobic towards unsteady anaerobic swimming, then fatigue at 30.3±0.4°C (mean±s.e.m.). Gait transition and fatigue presumably indicate an oxygen limitation, which reflects the inability to meet the combined demands of swimming plus warming. The CTmax protocol also elicited an increase in MO2, culminating in LOE at 34.0±0.4°C, which is significantly warmer than fatigue at CTSmax. The maximum MO2 achieved in the CTmax protocol was, however, less than 30% of that achieved in the CTSmax protocol. Therefore, the static CTmax did not exploit full cardiorespiratory capacity for oxygen supply, indicating that LOE was not caused by systemic oxygen limitation. Consequently, systemic oxygen supply can be significant for tolerance of acute warming in seabass but this depends upon the physiological context and the endpoint used.


Asunto(s)
Aclimatación , Oxígeno , Aclimatación/fisiología , Temperatura
2.
Conserv Physiol ; 11(1): coad012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006338

RESUMEN

Many abiotic and biotic factors are known to shape species' distributions, but we lack understanding of how innate physiological traits, such as aerobic scope (AS), may influence the latitudinal range of species. Based on theoretical assumptions, a positive link between AS and distribution range has been proposed, but there has been no broad comparative study across species to test this hypothesis. We collected metabolic rate data from the literature and performed a phylogenetically informed analysis to investigate the influence of AS on the current geographical distributions of 111 teleost fish species. Contrary to expectations, we found a negative relationship between absolute latitude range and thermal peak AS in temperate fishes. We found no evidence for an association between thermal range of AS and the range of latitudes occupied for 32 species. Our main results therefore contradict the prevailing theory of a positive link between AS and distribution range in fish.

3.
Bioessays ; 45(6): e2300026, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37042115

RESUMEN

Researchers from diverse disciplines, including organismal and cellular physiology, sports science, human nutrition, evolution and ecology, have sought to understand the causes and consequences of the surprising variation in metabolic rate found among and within individual animals of the same species. Research in this area has been hampered by differences in approach, terminology and methodology, and the context in which measurements are made. Recent advances provide important opportunities to identify and address the key questions in the field. By bringing together researchers from different areas of biology and biomedicine, we describe and evaluate these developments and the insights they could yield, highlighting the need for more standardisation across disciplines. We conclude with a list of important questions that can now be addressed by developing a common conceptual and methodological toolkit for studies on metabolic variation in animals.


Asunto(s)
Metabolismo Basal , Animales , Humanos , Fenotipo
4.
J Exp Biol ; 224(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520540

RESUMEN

Interest in the measurement of metabolic rates is growing rapidly, because of the importance of metabolism in advancing our understanding of organismal physiology, behaviour, evolution and responses to environmental change. The study of metabolism in aquatic animals is undergoing an especially pronounced expansion, with more researchers utilising intermittent-flow respirometry as a research tool than ever before. Aquatic respirometry measures the rate of oxygen uptake as a proxy for metabolic rate, and the intermittent-flow technique has numerous strengths for use with aquatic animals, allowing metabolic rate to be repeatedly estimated on individual animals over several hours or days and during exposure to various conditions or stimuli. There are, however, no published guidelines for the reporting of methodological details when using this method. Here, we provide the first guidelines for reporting intermittent-flow respirometry methods, in the form of a checklist of criteria that we consider to be the minimum required for the interpretation, evaluation and replication of experiments using intermittent-flow respirometry. Furthermore, using a survey of the existing literature, we show that there has been incomplete and inconsistent reporting of methods for intermittent-flow respirometry over the past few decades. Use of the provided checklist of required criteria by researchers when publishing their work should increase consistency of the reporting of methods for studies that use intermittent-flow respirometry. With the steep increase in studies using intermittent-flow respirometry, now is the ideal time to standardise reporting of methods, so that - in the future - data can be properly assessed by other scientists and conservationists.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Animales , Metabolismo Basal , Temperatura
5.
J Fish Biol ; 98(6): 1536-1555, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33216368

RESUMEN

Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.


Asunto(s)
Aclimatación , Calentamiento Global , Adaptación Fisiológica , Animales , Cambio Climático , Peces/genética
6.
Biol Lett ; 12(9)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27677812

RESUMEN

The physiology and behaviour of ectotherms are strongly influenced by environmental temperature. A general hypothesis is that for performance traits, such as those related to growth, metabolism or locomotion, species face a trade-off between being a thermal specialist or a thermal generalist, implying a negative correlation between peak performance and performance breadth across a range of temperatures. Focusing on teleost fishes, we performed a phylogenetically informed comparative analysis of the relationship between performance peak and breadth for aerobic scope (AS), which represents whole-animal capacity available to carry out simultaneous oxygen-demanding processes (e.g. growth, locomotion, reproduction) above maintenance. Literature data for 28 species indicate that peak aerobic capacity is not linked to thermal performance breadth and that other physiological factors affecting thermal tolerance may prevent such a trade-off from emerging. The results therefore suggest that functional links between peak and thermal breadth for AS may not constrain evolutionary responses to environmental changes such as climate warming.

7.
Proc Biol Sci ; 282(1813): 20150603, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26246542

RESUMEN

The harvest of animals by humans may constitute one of the strongest evolutionary forces affecting wild populations. Vulnerability to harvest varies among individuals within species according to behavioural phenotypes, but we lack fundamental information regarding the physiological mechanisms underlying harvest-induced selection. It is unknown, for example, what physiological traits make some individual fish more susceptible to capture by commercial fisheries. Active fishing methods such as trawling pursue fish during harvest attempts, causing fish to use both aerobic steady-state swimming and anaerobic burst-type swimming to evade capture. Using simulated trawling procedures with schools of wild minnows Phoxinus phoxinus, we investigate two key questions to the study of fisheries-induced evolution that have been impossible to address using large-scale trawls: (i) are some individuals within a fish shoal consistently more susceptible to capture by trawling than others?; and (ii) if so, is this related to individual differences in swimming performance and metabolism? Results provide the first evidence of repeatable variation in susceptibility to trawling that is strongly related to anaerobic capacity and swimming ability. Maximum aerobic swim speed was also negatively correlated with vulnerability to trawling. Standard metabolic rate was highest among fish that were least vulnerable to trawling, but this relationship probably arose through correlations with anaerobic capacity. These results indicate that vulnerability to trawling is linked to anaerobic swimming performance and metabolic demand, drawing parallels with factors influencing susceptibility to natural predators. Selection on these traits by fisheries could induce shifts in the fundamental physiological makeup and function of descendent populations.


Asunto(s)
Cyprinidae/fisiología , Explotaciones Pesqueras , Natación , Anaerobiosis , Animales , Escocia
8.
J Exp Biol ; 217(Pt 23): 4115-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25359933

RESUMEN

In intertidal environments, the recurring hypoxic condition at low tide is one of the main factors affecting fish behaviour, causing broad effects on ecological interactions. We assessed the effects of hypoxia on lateralization (e.g. the tendency to turn left or right), a behaviour related to brain functional asymmetry, which is thought to play a key role in several life history aspects of fish. Using staghorn sculpin (Leptocottus armatus), a benthic fish that typically inhabits the intertidal zone, we found that hypoxia affects behavioural lateralization at the population level. On average, staghorn sculpins showed a distinct preference for right turns under normoxic conditions (>90% oxygen saturation), but an equal probability of turning right or left after exposure to hypoxia for 2 h (20% oxygen saturation). The specific turning preference observed in the staghorn sculpin control population is likely to have an adaptive value, for example in predator-prey interactions by enhancing attack success or survival from predatory attacks. Therefore the alteration of lateralization expressed by staghorn sculpins under hypoxic conditions may have far-reaching implications for species ecology and trophic interactions. Moreover, our work raises the need to study this effect in other species, in which a hypoxia-driven disruption of lateralization could affect a wider range of behaviours, such as social interactions and schooling.


Asunto(s)
Ecosistema , Eutrofización , Lateralidad Funcional/fisiología , Locomoción/fisiología , Oxígeno , Perciformes/fisiología , Animales , Conducta Animal , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...