Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nutrients ; 14(12)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35745275

RESUMEN

BACKGROUND: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants' gut ecosystems. METHOD: We assessed the effect of lactose, 2'-FL, 2'-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2'-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3'- and 6'-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). RESULTS: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs' fermented media protected against inflammatory intestinal barrier disruption. 2'-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. CONCLUSION: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances.


Asunto(s)
Microbioma Gastrointestinal , Leche Humana , Células CACO-2 , Ecosistema , Humanos , Lactante , Fórmulas Infantiles , Lactosa/metabolismo , Lactosa/farmacología , Leche Humana/metabolismo , Oligosacáridos/metabolismo
2.
Microbiome ; 6(1): 152, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30172257

RESUMEN

BACKGROUND: Host-microbe balance maintains intestinal homeostasis and strongly influences inflammatory conditions such as inflammatory bowel diseases (IBD). Here we focused on bacteria-fungi interactions and their implications on intestinal inflammation, a poorly understood area. METHODS: Dextran sodium sulfate (DSS)-induced colitis was assessed in mice treated with vancomycin (targeting gram-positive bacteria) or colistin (targeting Enterobacteriaceae) and supplemented with either Saccharomyces boulardii CNCM I-745 or Candida albicans. Inflammation severity as well as bacterial and fungal microbiota compositions was monitored. RESULTS: While S. boulardii improved DSS-induced colitis and C. albicans worsened it in untreated settings, antibiotic treatment strongly modified DSS susceptibility and effects of fungi on colitis. Vancomycin-treated mice were fully protected from colitis, while colistin-treated mice retained colitis phenotype but were not affected anymore by administration of fungi. Antibacterial treatments not only influenced bacterial populations but also had indirect effects on fungal microbiota. Correlations between bacterial and fungal relative abundance were dramatically decreased in colistin-treated mice compared to vancomycin-treated and control mice, suggesting that colistin-sensitive bacteria are involved in interactions with fungi. Restoration of the Enterobacteriaceae population by administrating colistin-resistant Escherichia coli reestablished both beneficial effects of S. boulardii and pathogenic effects of C. albicans on colitis severity. This effect was at least partly mediated by an improved gut colonization by fungi. CONCLUSIONS: Fungal colonization of the gut is affected by the Enterobacteriaceae population, indirectly modifying effects of mycobiome on the host. This finding provides new insights into the role of inter-kingdom functional interactions in intestinal physiopathology and potentially in IBD.


Asunto(s)
Candida albicans/fisiología , Colitis/microbiología , Enterobacteriaceae/fisiología , Saccharomyces boulardii/fisiología , Animales , Antibiosis , Anticuerpos/administración & dosificación , Candida albicans/genética , Candida albicans/aislamiento & purificación , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Enterobacteriaceae/clasificación , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Femenino , Microbioma Gastrointestinal , Humanos , Ratones , Ratones Endogámicos C57BL , Saccharomyces boulardii/genética , Saccharomyces boulardii/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA