Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(17): 4115-4127, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39051493

RESUMEN

Isothermal nucleic acid amplification tests have the potential to improve disease diagnosis at the point of care, but it remains challenging to develop multiplexed tests that can detect ≥3 targets or to detect point mutations that may cause disease. These capabilities are critical to enabling informed clinical decision-making for many applications, such as sickle cell disease (SCD). To address this, we describe the development of a multiplexed allele-specific recombinase polymerase amplification (RPA) assay with lateral flow readout. We first characterize the specificity of RPA using primer design strategies employed in PCR to achieve point mutation detection, and demonstrate the utility of these strategies in achieving selective isothermal amplification and detection of genomic DNA encoding for the healthy ßA globin allele, or genomic DNA containing point mutations encoding for pathologic ßS and ßC globin alleles, which are responsible for most sickle cell disorders. We then optimize reaction conditions to achieve multiplexed amplification and identification of the three alleles in a single reaction. Finally, we perform a small pilot study with 20 extracted genomic DNA samples from SCD patients and healthy volunteers - of the 13 samples with valid results, the assay demonstrated 100% sensitivity and 100% specificity for detecting pathologic alleles, and an overall accuracy of 92.3% for genotype prediction. This multiplexed assay is rapid, minimally instrumented, and when combined with point-of-care sample preparation, could enable DNA-based diagnosis of SCD in low-resource settings. The strategies reported here could be applied to other challenges, such as detection of mutations that confer drug resistance.


Asunto(s)
Alelos , Anemia de Células Falciformes , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/diagnóstico , Humanos , Recombinasas/metabolismo , Globinas beta/genética , Mutación Puntual
2.
Sci Transl Med ; 15(701): eabn4768, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37343083

RESUMEN

High-risk human papillomavirus (HPV) DNA testing is widely acknowledged as the most sensitive cervical cancer screening method but has limited availability in resource-limited settings, where the burden of cervical cancer is highest. Recently, HPV DNA tests have been developed for use in resource-limited settings, but they remain too costly for widespread use and require instruments that are often limited to centralized laboratories. To help meet the global need for low-cost cervical cancer screening, we developed a prototype, sample-to-answer, point-of-care test for HPV16 and HPV18 DNA. Our test relies on isothermal DNA amplification and lateral flow detection, two technologies that reduce the need for complex instrumentation. We integrated all test components into a low-cost, manufacturable platform, and performance of the integrated test was evaluated with synthetic samples, provider-collected clinical samples in a high-resource setting in the United States, and self-collected clinical samples in a low-resource setting in Mozambique. We demonstrated a clinically relevant limit of detection of 1000 HPV16 or HPV18 DNA copies per test. The test requires six user steps, yields results in 45 min, and can be performed using a benchtop instrument and minicentrifuge by minimally trained personnel. The projected per-test cost is <$5, and the projected instrumentation cost is <$1000. These results show the feasibility of a sample-to-answer, point-of-care HPV DNA test. With the inclusion of other HPV types, this test has the potential to fill a critical gap for decentralized and globally accessible cervical cancer screening.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Infecciones por Papillomavirus/diagnóstico , Configuración de Recursos Limitados , Detección Precoz del Cáncer/métodos , ADN Viral/genética , Técnicas de Amplificación de Ácido Nucleico/métodos
3.
PLoS One ; 17(2): e0264130, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213596

RESUMEN

The global COVID-19 pandemic has highlighted the need for rapid, accurate and accessible nucleic acid tests to enable timely identification of infected individuals. We optimized a sample-to-answer nucleic acid test for SARS-CoV-2 that provides results in <1 hour using inexpensive and readily available reagents. The test workflow includes a simple lysis and viral inactivation protocol followed by direct isothermal amplification of viral RNA using RT-LAMP. The assay was validated using two different instruments, a portable isothermal fluorimeter and a standard thermocycler. Results of the RT-LAMP assay were compared to traditional RT-qPCR for nasopharyngeal swabs, nasal swabs, and saliva collected from a cohort of patients hospitalized due to COVID-19. For all three sample types, positive agreement with RT-LAMP performed using the isothermal fluorimeter was 100% for samples with Ct <30 and 69-91% for samples with Ct <40. Following validation, the test was successfully scaled to test the saliva of up to 400 asymptomatic individuals per day as part of the campus surveillance program at Rice University. Successful development, validation, and scaling of this sample-to-answer, extraction-free real-time RT-LAMP test for SARS-CoV-2 adds a highly adaptable tool to efforts to control the COVID-19 pandemic, and can inform test development strategies for future infectious disease threats.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , Nasofaringe/virología , Nariz/virología , Vigilancia de la Población/métodos , SARS-CoV-2/aislamiento & purificación , Saliva/virología , COVID-19/virología , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , Sensibilidad y Especificidad
4.
Anal Chem ; 93(11): 4832-4840, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33689292

RESUMEN

Sickle cell disease (SCD) is a group of common, life-threatening disorders caused by a point mutation in the ß globin gene. Early diagnosis through newborn and early childhood screening, parental education, and preventive treatments are known to reduce mortality. However, the cost and complexity of conventional diagnostic methods limit the feasibility of early diagnosis for SCD in resource-limited areas worldwide. Although several point-of-care tests are commercially available, most are antibody-based tests, which cannot be used in patients who have recently received a blood transfusion. Here, we describe the development of a rapid, low-cost nucleic acid test that uses real-time fluorescence to detect the point mutation encoding hemoglobin S (HbS) in one round of isothermal recombinase polymerase amplification (RPA). When tested with a set of clinical samples from SCD patients and healthy volunteers, our assay demonstrated 100% sensitivity for both the ßA globin and ßS globin alleles and 94.7 and 97.1% specificities for the ßA globin allele and ßS globin allele, respectively (n = 91). Finally, we demonstrate proof-of-concept sample-to-answer genotyping of genomic DNA from capillary blood using an alkaline lysis procedure and direct input of diluted lysate into RPA. The workflow is performed in <30 min at a cost of <$5 USD on a commercially available benchtop fluorimeter and an open-source miniature fluorimeter. This study demonstrates the potential utility of a rapid, sample-to-answer nucleic acid test for SCD that may be implemented near the point of care and could be adapted to other disease-causing point mutations in genomic DNA.


Asunto(s)
Anemia de Células Falciformes , Recombinasas , Alelos , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Preescolar , Hemoglobina Falciforme/análisis , Humanos , Recién Nacido , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , Sensibilidad y Especificidad
5.
J Vis Exp ; (168)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33616108

RESUMEN

Traditional methods to detect and quantify nucleic acids rely on polymerase chain reaction (PCR) and require the use of expensive thermocyclers with integrated fluorescence detection of amplicons. Isothermal nucleic acid amplification technologies eliminate the need for thermal cycling; however, fluorescence-based detection of products is still required for real-time, quantitative results. Several portable isothermal heaters with integrated fluorescence detection are now commercially available; however, the cost of these devices remains a significant barrier to widespread adoption in resource-limited settings. Described here is a protocol for the design and assembly of a modular, low-cost fluorimeter constructed from off-the-shelf components. Enclosed in a compact 3D printed housing, the fluorimeter is designed to be placed atop a commercially available heat block holding a PCR tube. The fluorimeter described here was optimized to detect fluorescein isothiocyanate (FITC) dye, but the system can be modified for use with dyes commonly used as reporters in real-time nucleic acid amplification reactions. Clinical applicability of the system is demonstrated by performing real-time nucleic acid detection with two isothermal amplification technologies: recombinase polymerase amplification (RPA) for detection of positive control DNA provided in a commercial kit and reverse transcription loop-mediated isothermal amplification (RT-LAMP) for detection of clinically meaningful levels of SARS-CoV-2 RNA.


Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Nucleicos/genética , Impresión Tridimensional , Transcripción Reversa/genética , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/genética , Recursos en Salud , Humanos , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
J Biomol Tech ; 32(3): 180-185, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35027875

RESUMEN

Frequent and accessible testing is a critical tool to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To develop low-cost rapid tests, many researchers have used reverse transcription loop-mediated isothermal amplification (RT-LAMP) with fluorescent readout. Fluorescent LAMP-based assays can be performed using cost-effective, portable, isothermal instruments that are simpler to use and more rugged than polymerase chain reaction (PCR) instruments. However, false-positive results due to nonspecific priming and amplification have been reported for a number of LAMP-based assays. In this report, we implemented a RT-LAMP assay for SARS-CoV-2 on a portable isothermal fluorimeter and a traditional thermocycler; nonspecific amplification was not observed using the thermocycler but did occur frequently with the isothermal fluorimeter. We explored 4 strategies to optimize the SARS-CoV-2 RT-LAMP assay for use with an isothermal fluorimeter and found that overlaying the reaction with mineral oil and including the enzyme Tte UvrD helicase in the reaction eliminated the problem. We anticipate these results and strategies will be relevant for use with a wide range of portable isothermal instruments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sistemas de Atención de Punto , ARN Viral/genética , Sensibilidad y Especificidad
7.
Anal Biochem ; 544: 64-71, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29229373

RESUMEN

Regular HIV-1 viral load monitoring is the standard of care to assess antiretroviral therapy effectiveness in resource-rich settings. Persistently elevated viral loads indicate virologic failure (VF), which warrants HIV drug resistance testing (HIVDRT) to allow individualized regimen switches. However, in settings lacking access to HIVDRT, clinical decisions are often made based on symptoms, leading to unnecessary therapy switches and increased costs of care. This work presents a proof-of-concept assay to detect M184V, the most common drug resistance mutation after first-line antiretroviral therapy failure, in a paper format. The first step isothermally amplifies a section of HIV-1 reverse transcriptase containing M184V using a recombinase polymerase amplification (RPA) assay. Then, an oligonucleotide ligation assay (OLA) is used to selectively label the mutant and wild type amplified sequences. Finally, a lateral flow enzyme-linked immunosorbent assay (ELISA) differentiates between OLA-labeled products with or without M184V. Our method shows 100% specificity and 100% sensitivity when tested with samples that contained 200 copies of mutant DNA and 800 copies of wild type DNA prior to amplification. When integrated with sample preparation, this method may detect HIV-1 drug resistance at a low cost and at a rural hospital laboratory.


Asunto(s)
Fármacos Anti-VIH/análisis , ADN Viral/genética , Ensayo de Inmunoadsorción Enzimática , Transcriptasa Inversa del VIH/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Papel , Fármacos Anti-VIH/farmacología , ADN Viral/efectos de los fármacos , Farmacorresistencia Viral/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores
8.
Lab Chip ; 17(20): 3351-3387, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28832061

RESUMEN

Each day, approximately 830 women and 7400 newborns die from complications during pregnancy and childbirth. Improving maternal and neonatal health will require bringing rapid diagnosis and treatment to the point of care in low-resource settings. However, to date there are few diagnostic tools available that can be used at the point of care to detect the leading causes of maternal and neonatal mortality in low-resource settings. Here we review both commercially available diagnostics and technologies that are currently in development to detect the leading causes of maternal and neonatal mortality, highlighting key gaps in development where innovative design could increase access to technology and enable rapid diagnosis at the bedside.


Asunto(s)
Salud del Lactante , Salud Materna , Sistemas de Atención de Punto , Ahorro de Costo , Diseño de Equipo , Femenino , Humanos , Lactante , Mortalidad Infantil , Recién Nacido , Embarazo , Diagnóstico Prenatal
9.
Mol Genet Metab ; 115(2-3): 95-100, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25936660

RESUMEN

Quantification of ammonia in whole blood has applications in the diagnosis and management of many hepatic diseases, including cirrhosis and rare urea cycle disorders, amounting to more than 5 million patients in the United States. Current techniques for ammonia measurement suffer from limited range, poor resolution, false positives or large, complex sensor set-ups. Here we demonstrate a technique utilizing inexpensive reagents and simple methods for quantifying ammonia in 100 µL of whole blood. The sensor comprises a modified form of the indophenol reaction, which resists sources of destructive interference in blood, in conjunction with a cation-exchange membrane. The presented sensing scheme is selective against other amine containing molecules such as amino acids and has a shelf life of at least 50 days. Additionally, the resulting system has high sensitivity and allows for the accurate reliable quantification of ammonia in whole human blood samples at a minimum range of 25 to 500 µM, which is clinically for rare hyperammonemic disorders and liver disease. Furthermore, concentrations of 50 and 100 µM ammonia could be reliably discerned with p = 0.0001.


Asunto(s)
Amoníaco/sangre , Análisis Químico de la Sangre/métodos , Amoníaco/química , Humanos , Hiperamonemia/sangre , Indofenol/química
10.
Biotechnol Bioeng ; 110(11): 2994-3002, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23744741

RESUMEN

This work aims to develop a repeatable enzyme entrapment method that preserves activity within an amicable environment while resisting activity reduction in the presence of environmental challenges. Advances in such methods have wide potential use in biosensor applications. In this work ß-galactosidase (lactase) enzyme was entrapped within hydrogel matrices of acrylamide (ACR) crosslinked with N,N'-methylenebisacrylamide (BIS, non-degradable) or poly(ethylene glycol) diacrylate (PEGDA, degradable) to create "biogels." Diffusivity studies of control, enzyme free, hydrogel constructs showed near-Fickian swelling behavior in PBS regardless of crosslinker type or density. As expected, the swelling rate, Ks , decreased when increasing the crosslink density from 78.6 to 14.7 min⁻¹ over a range of 1-20 mol% PEGDA indicating that diffusivity into the matrix is dependent on crosslink density. Fabricated biogels were evaluated for maintained enzyme activity in the 7 and 8 pH range. PEGDA crosslinked gels consistently showed improved enzymatic activity retention as compared to BIS crosslinked gels. As PEGDA crosslink density increased from 5 to 10 mol%, enzymatic activity retention post-initial entrapment increased. Higher PEGDA crosslink densities between 15% and 40% decreased enzymatic activity due to assumed steric hindrance of the entrapped enzyme and also decreased substrate and product diffusion. Increased enzymatic stability was observed in 40 mol% PEGDA crosslinked gels. The biogels were pH challenged to 8.0 and stability, measured as retention of activity, was observed to be 91%. Free, non-entrapped, solution based enzyme conversion only retained 23% activity under the same pH challenge conditions. No significant loss of active enzyme was determined to elute out of the biogels during storage in PBS or during biogel wash and recycling. This entrapment method illustrates the potential to sterically hinder and diffusively impede enzymes from performing their function. Degradation of the network crosslinks can then potentially enable the reactivation of the enzyme at a site and time dictated by the user.


Asunto(s)
Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Hidrogeles/química , Hidrogeles/metabolismo , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...