Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107513, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945450

RESUMEN

DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via non-homologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation, and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a non-canonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Sequence and structural analyses of the DNA-PKcs substrate recognition pocket revealed unique features compared to closely related PIKK kinases that may explain its broader substrate preference. These findings expand the repertoire of DNA-PKcs and ATM substrates while establishing a novel preferential phosphorylation motif for DNA-PKcs.

2.
bioRxiv ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38293078

RESUMEN

DNA-PKcs is a DNA damage sensor kinase with established roles in DNA double-strand break repair via non-homologous end joining. Recent studies have revealed additional roles of DNA-PKcs in the regulation of transcription, translation and DNA replication. However, the substrates through which DNA-PKcs regulates these processes remain largely undefined. Here we utilized quantitative phosphoproteomics to generate a high coverage map of DNA-PKcs signaling in response to ionizing radiation and mapped its interplay with the ATM kinase. Beyond the detection of the canonical S/T-Q phosphorylation motif, we uncovered a non-canonical mode of DNA-PKcs signaling targeting S/T-ψ-D/E motifs. Cross-species analysis in mouse pre-B and human HCT116 cell lines revealed splicing factors and transcriptional regulators phosphorylated at this novel motif, several of which contain SAP domains. These findings expand the list of DNA-PKcs and ATM substrates and establish a novel preferential phosphorylation motif for DNA-PKcs that connects it to proteins involved in nucleotide processes and interactions.

3.
J Biol Chem ; 295(7): 2148-2159, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31919098

RESUMEN

PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.


Asunto(s)
Proteínas Bacterianas/genética , Redes y Vías Metabólicas/genética , Ácidos Fosfatidicos/metabolismo , Fosfolípidos/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Catálisis , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis/genética , Ácidos Fosfatidicos/genética , Fosfolípidos/genética
4.
J Biol Chem ; 295(7): 2136-2147, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31796629

RESUMEN

PlsX plays a central role in the coordination of fatty acid and phospholipid biosynthesis in Gram-positive bacteria. PlsX is a peripheral membrane acyltransferase that catalyzes the conversion of acyl-ACP to acyl-phosphate, which is in turn utilized by the polytopic membrane acyltransferase PlsY on the pathway of bacterial phospholipid biosynthesis. We have recently studied the interaction between PlsX and membrane phospholipids in vivo and in vitro, and observed that membrane association is necessary for the efficient transfer of acyl-phosphate to PlsY. However, understanding the molecular basis of such a channeling mechanism remains a major challenge. Here, we disentangle the binding and insertion events of the enzyme to the membrane, and the subsequent catalysis. We show that PlsX membrane binding is a process mostly mediated by phospholipid charge, whereas fatty acid saturation and membrane fluidity remarkably influence the membrane insertion step. Strikingly, the PlsXL254E mutant, whose biological functionality was severely compromised in vivo but remains catalytically active in vitro, was able to superficially bind to phospholipid vesicles, nevertheless, it loses the insertion capacity, strongly supporting the importance of membrane insertion in acyl-phosphate delivery. We propose a mechanism in which membrane fluidity governs the insertion of PlsX and thus regulates the biosynthesis of phospholipids in Gram-positive bacteria. This model may be operational in other peripheral membrane proteins with an unprecedented impact in drug discovery/development strategies.


Asunto(s)
Proteínas Bacterianas/genética , Bacterias Grampositivas/genética , Fluidez de la Membrana/genética , Fosfolípidos/biosíntesis , Bacillus subtilis/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Fosfatos/metabolismo , Fosfolípidos/genética
5.
Methods Mol Biol ; 1657: 403-416, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28889310

RESUMEN

Isothermal titration calorimetry (ITC) is a commonly used biophysical technique that enables the quantitative characterization of intermolecular interactions in solution. Based on enthalpy changes (ΔH) upon titration of the binding partner (e.g., a small-molecule ligand such as c-di-GMP) to the molecule of interest (e.g., a receptor protein), the resulting binding isotherms provide information on the equilibrium association/dissociation constants (K a, K d) and stoichiometry of binding (n), as well as on changes in the Gibbs free energy (ΔG) and entropy (ΔS) along the interaction. Here we present ITC experiments used for the characterization of c-di-GMP binding proteins and discuss advantages and potential caveats in the interpretation of results.


Asunto(s)
Calorimetría , GMP Cíclico/análogos & derivados , Proteínas de Unión al ADN/química , Proteínas Bacterianas , Calorimetría/métodos , Cromatografía en Gel/métodos , GMP Cíclico/química , GMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad
6.
J Biol Chem ; 292(26): 10899-10911, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28476887

RESUMEN

Septins are filament-forming GTP-binding proteins involved in many essential cellular events related to cytoskeletal dynamics and maintenance. Septins can self-assemble into heterocomplexes, which polymerize into highly organized, cell membrane-interacting filaments. The number of septin genes varies among organisms, and although their structure and function have been thoroughly studied in opisthokonts (including animals and fungi), no structural studies have been reported for other organisms. This makes the single septin from Chlamydomonas (CrSEPT) a particularly attractive model for investigating whether functional homopolymeric septin filaments also exist. CrSEPT was detected at the base of the flagella in Chlamydomonas, suggesting that CrSEPT is involved in the formation of a membrane-diffusion barrier. Using transmission electron microscopy, we observed that recombinant CrSEPT forms long filaments with dimensions comparable with those of the canonical structure described for opisthokonts. The GTP-binding domain of CrSEPT purified as a nucleotide-free monomer that hydrolyzes GTP and readily binds its analog guanosine 5'-3-O-(thio)triphosphate. We also found that upon nucleotide binding, CrSEPT formed dimers that were stabilized by an interface involving the ligand (G-interface). Across this interface, one monomer supplied a catalytic arginine to the opposing subunit, greatly accelerating the rate of GTP hydrolysis. This is the first report of an arginine finger observed in a septin and suggests that CrSEPT may act as its own GTP-activating protein. The finger is conserved in all algal septin sequences, suggesting a possible correlation between the ability to form homopolymeric filaments and the accelerated rate of hydrolysis that it provides.


Asunto(s)
Chlamydomonas reinhardtii/química , Complejos Multiproteicos/química , Proteínas de Plantas/química , Multimerización de Proteína , Septinas/química , Chlamydomonas reinhardtii/enzimología , Chlamydomonas reinhardtii/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Septinas/genética , Septinas/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(2): E209-18, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26712005

RESUMEN

Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiología , Transactivadores/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Calorimetría , Secuencia Conservada , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , GMP Cíclico/farmacología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Regiones Promotoras Genéticas/genética , Multimerización de Proteína/efectos de los fármacos , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Alineación de Secuencia , Soluciones , Temperatura , Transactivadores/química , Transcripción Genética
8.
PLoS Biol ; 9(2): e1000588, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21304926

RESUMEN

The bacterial second messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.


Asunto(s)
GMP Cíclico/análogos & derivados , Periplasma/metabolismo , Pseudomonas fluorescens/metabolismo , Transducción de Señal , Adhesión Bacteriana , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Sitios de Unión , Biopelículas , Cristalografía por Rayos X , GMP Cíclico/metabolismo , GMP Cíclico/fisiología , Dimerización , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/fisiología , Hidrolasas Diéster Fosfóricas/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiología , Relación Estructura-Actividad
9.
Methods Enzymol ; 471: 161-84, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20946848

RESUMEN

Many signal transduction and regulatory events are mediated by a change in oligomeric state upon posttranslational modification or ligand binding. Hence, the characterization of proteins and protein complexes with respect to their size and shape is crucial for elucidating the molecular mechanisms that control their activities. Commonly used methods for the determination of molecular weights of biological polymers such as standard size-exclusion chromatography or analytical ultracentrifugation have been applied successfully but have some limitations. Static multiangle light scattering presents an attractive alternative approach for absolute molecular weight measurements in solution. We review the biophysical principles, advantages, and pitfalls of some popular methods for determining the quaternary structure of proteins, using the response regulator diguanylate cyclase WspR from Pseudomonas and FimX, a protein involved in Pseudomonas aeruginosa twitching motility, as examples.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Science ; 327(5967): 866-8, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20150502

RESUMEN

Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Matriz Extracelular/metabolismo , Factores de Transcripción/metabolismo , Vibrio cholerae O1/fisiología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , GMP Cíclico/metabolismo , ADN Bacteriano/metabolismo , Dimerización , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Movimiento , Mutación Puntual , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética , Vibrio cholerae O1/citología , Vibrio cholerae O1/genética
11.
J Mol Biol ; 393(3): 619-33, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19695263

RESUMEN

The bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) controls secretion, cell adhesion, and motility, leading to biofilm formation and increased cytotoxicity. Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL or HD-GYP domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding the molecular mechanisms governing regulation and signaling specificity. We recently determined a product-inhibition pathway for the diguanylate cyclase response regulator WspR from Pseudomonas, a potent molecular switch that controls biofilm formation. In WspR, catalytic activity is modulated by a helical stalk motif that connects its phospho-receiver and GGDEF domains. The stalks facilitate the formation of distinct oligomeric states that contribute to both activation and autoinhibition. Here, we provide novel insights into the regulation of diguanylate cyclase activity in WspR based on the crystal structures of full-length WspR, the isolated GGDEF domain, and an artificially dimerized catalytic domain. The structures highlight that inhibition is achieved by restricting the mobility of rigid GGDEF domains, mediated by c-di-GMP binding to an inhibitory site at the GGDEF domain. Kinetic measurements and biochemical characterization corroborate a model in which the activation of WspR requires the formation of a tetrameric species. Tetramerization occurs spontaneously at high protein concentration or upon addition of the phosphomimetic compound beryllium fluoride. Our analyses elucidate common and WspR-specific mechanisms for the fine-tuning of diguanylate cyclase activity.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Liasas de Fósforo-Oxígeno/metabolismo , Pseudomonas syringae/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Berilio/farmacología , Cristalografía por Rayos X , GMP Cíclico/análogos & derivados , Activación Enzimática/efectos de los fármacos , Proteínas de Escherichia coli , Fluoruros/farmacología , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo
12.
Structure ; 17(8): 1104-16, 2009 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-19679088

RESUMEN

Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data and crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.


Asunto(s)
Proteínas Bacterianas/química , GMP Cíclico/análogos & derivados , Modelos Moleculares , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cristalización , Cristalografía por Rayos X , GMP Cíclico/química , GMP Cíclico/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
13.
Proc Natl Acad Sci U S A ; 106(31): 12700-5, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19549836

RESUMEN

Peripheral membrane proteins of the Bin/amphiphysin/Rvs (BAR) and Fer-CIP4 homology-BAR (F-BAR) family participate in cellular membrane trafficking and have been shown to generate membrane tubules. The degree of membrane bending appears to be encoded in the structure and immanent curvature of the particular protein domains, with BAR and F-BAR domains inducing high- and low-curvature tubules, respectively. In addition, oligomerization and the formation of ordered arrays influences tubule stabilization. Here, the F-BAR domain-containing protein Pacsin was found to possess a unique activity, creating small tubules and tubule constrictions, in addition to the wide tubules characteristic for this subfamily. Based on crystal structures of the F-BAR domain of Pacsin and mutagenesis studies, vesiculation could be linked to the presence of unique structural features distinguishing it from other F-BAR proteins. Tubulation was suppressed in the context of the full-length protein, suggesting that Pacsin is autoinhibited in solution. The regulated deformation of membranes and promotion of tubule constrictions by Pacsin suggests a more versatile function of these proteins in vesiculation and endocytosis beyond their role as scaffold proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Membrana Celular/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Cristalización , Endocitosis , Humanos , Liposomas/metabolismo , Estructura Terciaria de Proteína
14.
J Biol Chem ; 283(20): 14120-31, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18353775

RESUMEN

Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.


Asunto(s)
Archaea/metabolismo , Proteínas Arqueales/química , Estabilidad del ARN , ARN/química , Catálisis , Dimerización , Humanos , Modelos Biológicos , Conformación Molecular , Mutagénesis , Nucleótidos/química , Fosfatos/química , Pyrococcus abyssi/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Sulfolobus solfataricus/metabolismo
15.
Biochim Biophys Acta ; 1774(2): 278-85, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17188949

RESUMEN

Echinococcus granulosus antigen B is an oligomeric protein of 120-160 kDa composed by 8-kDa (AgB8) subunits. Here, we demonstrated that the AgB8 recombinant subunits AgB8/1, AgB8/2 and AgB8/3 are able to self-associate into high order homo-oligomers, showing similar properties to that of parasite-produced AgB, making them valuable tools to study AgB structure. Dynamic light scattering, size exclusion chromatography and cross-linking assays revealed approximately 120- to 160-kDa recombinant oligomers, with a tendency to form populations with different aggregation states. Recombinant oligomers showed helical circular dichroism spectra and thermostability similar to those of purified AgB. Cross-linking and limited proteolysis experiments indicated different degrees of stability and compactness between the recombinant oligomers, with the AgB8/3 one showing a more stable and compact structure. We have also built AgB8 subunit structural models in order to predict the surfaces possibly involved in electrostatic and hydrophobic interactions during oligomerization.


Asunto(s)
Antígenos Helmínticos/química , Echinococcus granulosus/inmunología , Secuencia de Aminoácidos , Animales , Antígenos Helmínticos/inmunología , Biopolímeros , Cromatografía en Gel , Dicroismo Circular , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...