Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Microgravity ; 10(1): 68, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879550

RESUMEN

Iron is essential for cell respiration, muscle metabolism, and oxygen transport. Recent research has shown that simulated microgravity rapidly affects iron metabolism in men. However, its impact on women remains unclear. This study aims to compare iron metabolism alterations in both sexes exposed to 5 days of dry immersion. Our findings demonstrate that women, similarly to men, experience increased systemic iron availability and elevated serum hepcidin levels, indicative of iron misdistribution after short-term exposure to simulated microgravity.

2.
Nat Commun ; 14(1): 6311, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813884

RESUMEN

Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Femenino , Descondicionamiento Cardiovascular/fisiología , Inmersión , Ingravidez/efectos adversos , Simulación de Ingravidez
3.
BMC Public Health ; 23(1): 1402, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475036

RESUMEN

BACKGROUND: Regular physical activity improves health and quality of life for people with cardiovascular risk factors. However, few studies have demonstrated the applicability of strategies in health care to promote physical activity. OBJECTIVE: To evaluate if a written physical activity prescription combined with pedometer increases physical activity over one year compared with verbal advice in patients with cardiovascular disease risk in primary care. METHODS: The randomised-controlled, interventional, 12-month PEPPER study recruited patients aged 35 to 74 years, having quarterly followed-ups for hypertension, dyslipidaemia, or diabetes, and judged insufficiently active. Seventeen practices randomised patients into either the experimental group, who received a written, personalised prescription for daily step numbers, pedometer and logbook, or control group, who received verbal advice to do at least 15 min of rapid walking or equivalent daily. The primary outcome was the change in total weekly energy expenditure measured using an accelerometer at 3 months. The secondary outcomes were changes in step count, physical activity levels, quality of life, perceived obstacles to physical activity, and biomedical indicators at 3 and 12 months. RESULTS: One hundred and twenty-one participants were randomised. Although, weekly energy expenditure did not differ between the prescription and verbal instruction group, the estimated time spent doing moderate-intensity activity was significantly higher in the prescription group than the verbal group by an average of four minutes/week (p = 0.018)(95% CI [0.7 - 7.4]) reaching 48 min after 12 months (95% CI: 8 - 89). Similarly, this was associated with a clinically, higher average step number of 5256 steps/week increase over a year (95% CI: 660 - 9852). Among the most sedentary subgroup, walking less than 5000 steps/day at baseline, an 8868 steps/week (95% CI [2988 - 14700]) increase was observed in the prescription group. CONCLUSION: Prescribing physical activity did not significantly modify total weekly energy expenditure, but slightly increased moderate-intensity activity duration and step counts, particularly among the most sedentary participants. Prescribing personalised physical activity goals encourages sedentary patients to engage in physical activity. TRIAL REGISTRATION: The PEPPER trial is registered in the US National Institutes of Health Clinical Trials Registry under number NCT02317003 (15/12/2014).


Asunto(s)
Medicina General , Calidad de Vida , Humanos , Ejercicio Físico , Caminata , Prescripciones
4.
Arch Dermatol Res ; 315(7): 1897-1908, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36847829

RESUMEN

Pseudoxanthoma elasticum (PXE (OMIM 264800)) is an autosomal recessive connective tissue disorder mainly caused by mutations in the ABCC6 gene. PXE results in ectopic calcification primarily in the skin, eye and blood vessels that can lead to blindness, peripheral arterial disease and stroke. Previous studies found correlation between macroscopic skin involvement and severe ophthalmological and cardiovascular complications. This study aimed to investigate correlation between skin calcification and systemic involvement in PXE. Ex vivo nonlinear microscopy (NLM) imaging was performed on formalin fixed, deparaffinized, unstained skin sections to assess the extent of skin calcification. The area affected by calcification (CA) in the dermis and density of calcification (CD) was calculated. From CA and CD, calcification score (CS) was determined. The number of affected typical and nontypical skin sites were counted. Phenodex + scores were determined. The relationship between the ophthalmological, cerebro- and cardiovascular and other systemic complications and CA, CD and CS, respectively, and skin involvement were analyzed. Regression models were built for adjustment to age and sex. We found significant correlation of CA with the number of affected typical skin sites (r = 0.48), the Phenodex + score (r = 0.435), extent of vessel involvement (V-score) (r = 0.434) and disease duration (r = 0.48). CD correlated significantly with V-score (r = 0.539). CA was significantly higher in patients with more severe eye (p = 0.04) and vascular (p = 0.005) complications. We found significantly higher CD in patients with higher V-score (p = 0.018), and with internal carotid artery hypoplasia (p = 0.045). Significant correlation was found between higher CA and the presence of macula atrophy (ß = - 0.44, p = 0.032) and acneiform skin changes (ß = 0.40, p = 0.047). Based on our results, the assessment of skin calcification pattern with nonlinear microscopy in PXE may be useful for clinicians to identify PXE patients who develop severe systemic complications.


Asunto(s)
Tejido Conectivo , Seudoxantoma Elástico , Piel , Seudoxantoma Elástico/diagnóstico , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/patología , Humanos , Tejido Conectivo/patología , Piel/patología , Calcificación Fisiológica , Mutación/genética , Elastina , Estudios Retrospectivos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano
5.
Hum Mutat ; 43(12): 1872-1881, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317459

RESUMEN

ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.


Asunto(s)
Seudoxantoma Elástico , Humanos , Mutación , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología , Penetrancia , Adenosina Trifosfato , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
6.
Front Physiol ; 13: 902983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117704

RESUMEN

Spaceflight is associated with enhanced inactivity, resulting in muscular and cardiovascular deconditioning. Although physical exercise is commonly used as a countermeasure, separate applications of running and resistive exercise modalities have never been directly compared during long-term bedrest. This study aimed to compare the effectiveness of two exercise countermeasure programs, running and resistance training, applied separately, for counteracting cardiovascular deconditioning induced by 90-day head-down bedrest (HDBR). Maximal oxygen uptake ( V ˙ O2max), orthostatic tolerance, continuous ECG and blood pressure (BP), body composition, and leg circumferences were measured in the control group (CON: n = 8), running exercise group (RUN: n = 7), and resistive exercise group (RES: n = 7). After HDBR, the decrease in V ˙ O2max was prevented by RUN countermeasure and limited by RES countermeasure (-26% in CON p < 0.05, -15% in RES p < 0.05, and -4% in RUN ns). Subjects demonstrated surprisingly modest orthostatic tolerance decrease for different groups, including controls. Lean mass loss was limited by RES and RUN protocols (-10% in CON vs. -5% to 6% in RES and RUN). Both countermeasures prevented the loss in thigh circumference (-7% in CON p < 0.05, -2% in RES ns, and -0.6% in RUN ns) and limited loss in calf circumference (-10% in CON vs. -7% in RES vs. -5% in RUN). Day-night variations in systolic BP were preserved during HDBR. Decrease in V ˙ O2max positively correlated with decrease in thigh (r = 0.54 and p = 0.009) and calf (r = 0.52 and p = 0.012) circumferences. During this 90-day strict HDBR, running exercise successfully preserved V ˙ O2max, and resistance exercise limited its decline. Both countermeasures limited loss in global lean mass and leg circumferences. The V ˙ O2max reduction seems to be conditioned more by muscular than by cardiovascular parameters.

7.
Am J Physiol Regul Integr Comp Physiol ; 323(3): R310-R318, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700204

RESUMEN

Astronauts frequently report microgravity-induced back pain, which is generally more pronounced in the beginning of a spaceflight. The dry immersion (DI) model reproduces the early effects of microgravity in terms of global support unloading and fluid shift, both of which are involved in back pain pathogenesis. Here, we assessed spinal changes induced by exposure to 5 days of strict DI in 18 healthy men (25-43-yr old) with (n = 9) or without (n = 9) thigh cuffs countermeasure. Intervertebral disk (IVD) height, spinal cord position, and apparent diffusion coefficient (ADC; reflecting global water motion) were measured using magnetic resonance imaging before and after DI. After DI, IVD height increased in thoracic (+3.3 ± 0.8 mm; C7-T12) and lumbar (+4.5 ± 0.4 mm; T12-L5) regions but not in the cervical region (C2-C7) of the spine. An increase in ADC after DI was observed at the L1 (∼6% increase, from 3.2 to 3.4 × 10-3 mm2/s; P < 0.001) and L2 (∼3% increase, from 3.4 to 3.5 × 10-3 mm2/s; P = 0.005) levels. There was no effect of thigh cuffs on spinal parameters. This change in IVD after DI follows the same "gradient" pattern of height increase from the cervical to the lumbar region as observed after bed rest and spaceflight. The increase in ADC at L1 level positively correlated with reported back pain. These findings emphasize the utility of the DI model for studying early spinal changes observed in microgravity.


Asunto(s)
Inmersión , Disco Intervertebral , Dolor de Espalda/patología , Humanos , Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/patología , Región Lumbosacra/patología , Región Lumbosacra/fisiología , Imagen por Resonancia Magnética/métodos , Masculino
8.
J Clin Med ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566717

RESUMEN

Pseudoxanthoma elasticum (PXE; OMIM 264800) is an autosomal recessive metabolic disorder characterized by progressive calcification in the skin, the Bruch's membrane, and the vasculature. Calcification in PXE results from a low level of circulating pyrophosphate (PPi) caused by ABCC6 deficiency. In this study, we used a cohort of 107 PXE patients to determine the pathophysiological relationship between plasma PPi, coronary calcification (CAC), lower limbs arterial calcification (LLAC), and disease severity. Overall, our data showed a deficit in plasma PPi in PXE patients compared to controls. Remarkably, affected females showed higher PPi levels than males, but a lower LLAC. There was a strong correlation between age and PPi in PXE patients (r = 0.423, p < 0.0001) but not in controls (r = 0.059, p = 0.828). A weak correlation was found between PPi and CAC (r = 0.266, p < 0.02); however, there was no statistically significant connection with LLAC (r = 0.068, p = 0.518) or a severity score (r = 0.077, p = 0.429). Surprisingly, we found no significant correlation between plasma alkaline phosphatase activity and PPi (r = 0.113, p = 0.252) or between a 10-year cardiovascular risk score and all other variables. Multivariate analysis confirmed that LLAC and CAC were strongly dependent on age, but not on PPi. Our data showed that arterial calcification is only weakly linked to circulating PPi levels and that time (i.e., age) appears to be the major determinant of disease severity and calcification in PXE. These data are important to better understand the natural history of this disease but also for the follow-up and management of patients, and the design of future clinical trials. Our results also show that PPi is not a good biomarker for the evaluation of disease severity and progression.

9.
Hum Brain Mapp ; 43(2): 833-843, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738281

RESUMEN

A better understanding of gait disorders that are associated with aging is crucial to prevent adverse outcomes. The functional study of gait remains a thorny issue due to technical constraints inherent to neuroimaging procedures, as most of them require to stay supine and motionless. Using an MRI-compatible system of boots reproducing gait-like plantar stimulation, we investigated the correlation between age and brain fMRI activation during simulated gait in healthy adults. Sixty-seven right-handed healthy volunteers aged between 20 and 77 years old (49.2 ± 18.0 years; 35 women) were recruited. Two paradigms were assessed consecutively: (a) gait-like plantar stimulation and (b) chaotic and not gait-related plantar stimulation. Resulting statistical parametric maps were analyzed with a multiple-factor regression that included age and a threshold determined by Monte-Carlo simulation to fulfill a family-wise error rate correction of p < .05. In the first paradigm, there was an age-correlated activation of the right pallidum, thalamus and putamen. The second paradigm showed an age-correlated deactivation of both primary visual areas (V1). The subtraction between results of the first and second paradigms showed age-correlated activation of the right presupplementary motor area (Brodmann Area [BA] 6) and right mid-dorsolateral prefrontal cortex (BA9-10). Our results show age-correlated activity in areas that have been associated with the control of gait, highlighting the relevance of this simulation model for functional gait study. The specific progressive activation of top hierarchical control areas in simulated gait and advancing age corroborate a progressive loss of automation in healthy older adults.


Asunto(s)
Mapeo Encefálico , Marcha/fisiología , Corteza Motora/fisiología , Adulto , Anciano , Envejecimiento , Encéfalo , Femenino , Antepié Humano/fisiología , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Estimulación Física , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Putamen/diagnóstico por imagen , Putamen/fisiología , Tálamo/diagnóstico por imagen , Tálamo/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Adulto Joven
10.
Sci Rep ; 11(1): 21906, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753989

RESUMEN

Ground based research modalities of microgravity have been proposed as innovative methods to investigate the aetiology of chronic age-related conditions such as cardiovascular disease. Dry Immersion (DI), has been effectively used to interrogate the sequelae of physical inactivity (PI) and microgravity on multiple physiological systems. Herein we look at the causa et effectus of 3-day DI on platelet phenotype, and correlate with both miRomic and circulating biomarker expression. The miRomic profile of platelets is reflective of phenotype, which itself is sensitive and malleable to the exposome, undergoing responsive transitions in order to fulfil platelets role in thrombosis and haemostasis. Heterogeneous platelet subpopulations circulate at any given time, with varying degrees of sensitivity to activation. Employing a DI model, we investigate the effect of acute PI on platelet function in 12 healthy males. 3-day DI resulted in a significant increase in platelet count, plateletcrit, platelet adhesion, aggregation, and a modest elevation of platelet reactivity index (PRI). We identified 15 protein biomarkers and 22 miRNA whose expression levels were altered after DI. A 3-day DI model of microgravity/physical inactivity induced a prothrombotic platelet phenotype with an unique platelet miRNA signature, increased platelet count and plateletcrit. This correlated with a unique circulating protein biomarker signature. Taken together, these findings highlight platelets as sensitive adaptive sentinels and functional biomarkers of epigenetic drift within the cardiovascular compartment.


Asunto(s)
Plaquetas/citología , Proteínas Sanguíneas/metabolismo , MicroARNs/genética , Modelos Biológicos , Ingravidez , Adulto , Biomarcadores/sangre , Hemostasis , Humanos , Masculino , Trombosis/metabolismo
11.
NPJ Microgravity ; 7(1): 43, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728651

RESUMEN

The objectives of this study were to determine whether 4 days of dry immersion (DI) induced similar arterial aging as spaceflight and to test the impact of thigh cuffs. Eighteen subjects underwent DI; nine wore thigh cuffs. Cardiac and arterial targets were assessed by ultrasound. No significant differences were found between the groups. The left ventricle volume, stroke volume (SV), and ejection fraction decreased with DI (p < 0.001). Carotid distensibility reduced (p < 0.05), carotid to femoral arterial tree became stiffer in 33% of the subjects, and femoral artery intima media thickness increased (p < 0.05). A reduction in plasma volume is likely to have caused the observed cardiac changes, whereas the arterial wall changes are probably best explained by hypokinesia and/or environmental stress. These changes are similar but lower in amplitude than those observed in spaceflight and mimic the natural aging effect on earth. The daytime-worn thigh cuffs had no acute or chronic impact on these arterial-focused measurements.

12.
Front Cell Dev Biol ; 8: 573727, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363139

RESUMEN

Epidemiological studies indicate that elevated alkaline phosphatase activity is associated with increased cardiovascular disease risk. Other epidemiological data demonstrate that mothers giving multiple childbirths (multipara) are also at increased risk of developing late-onset cardiovascular disease. We hypothesized that these two associations stem from a common cause, the insufficient plasma level of the ectopic mineralization inhibitor inorganic pyrophosphate, which is a substrate of alkaline phosphatase. As alkaline phosphatase activity is elevated in pregnancy, we hypothesized that pyrophosphate concentrations decrease gestationally, potentially leading to increased maternal vascular calcification and cardiovascular disease risk in multipara. We investigated plasma pyrophosphate kinetics pre- and postpartum in sheep and at term in humans and demonstrated its shortage in pregnancy, mirroring alkaline phosphatase activity. Next, we tested whether multiparity is associated with increased vascular calcification in pseudoxanthoma elasticum patients, characterized by low intrinsic plasma pyrophosphate levels. We demonstrated that these patients had increased vascular calcification when they give birth multiple times. We propose that transient shortages of pyrophosphate during repeated pregnancies might contribute to vascular calcification and multiparity-associated cardiovascular disease risk threatening hundreds of millions of healthy women worldwide. Future trials are needed to assess if gestational pyrophosphate supplementation might be a suitable prophylactic treatment to mitigate maternal cardiovascular disease risk in multiparous women.

13.
J Clin Med ; 9(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120982

RESUMEN

BACKGROUND: Pseudoxanthoma elasticum (PXE) is an inherited metabolic disease characterized by elastic fiber fragmentation and ectopic calcification. There is growing evidence that vascular calcification is associated with inflammatory status and is enhanced by inflammatory cytokines. Since PXE has never been considered as an inflammatory condition, no incidence of chronic inflammation leading to calcification in PXE has been reported and should be investigated. In atherosclerosis and aortic stenosis, positron emission tomography combined with computed tomographic (PET-CT) imaging has demonstrated a correlation between inflammation and calcification. The purpose of this study was to assess skin/artery inflammation and calcification in PXE patients. Methods: 18F-FluroDeoxyGlucose (18F-FDG) and 18F-Sodium Fluoride (18F-NaF) PET-CT, CT-imaging and Pulse wave velocity (PWV) were used to determine skin/vascular inflammation, tissue calcification, arterial calcium score (CS) and stiffness, respectively. In addition, inorganic pyrophosphate, high-sensitive C-reactive protein and cytokines plasma levels were monitored. RESULTS: In 23 PXE patients, assessment of inflammation revealed significant 18F-FDG uptake in diseased skin areas contrary to normal regions, and exclusively in the proximal aorta contrary to the popliteal arteries. There was no correlation between 18F-FDG uptake and PWV in the aortic wall. Assessment of calcification demonstrated significant 18F-NaF uptake in diseased skin regions and in the proximal aorta and femoral arteries. 18F-NaF wall uptake correlated with CS in the femoral arteries, and aortic wall PWV. Multivariate analysis indicated that aortic wall 18F-NaF uptake is associated with diastolic blood pressure. There was no significant correlation between 18F-FDG and 18F-NaF uptake in any of the artery walls. CONCLUSION: In the present cross-sectional study, inflammation and calcification were not correlated. PXE would appear to more closely resemble a chronic disease model of ectopic calcification than an inflammatory condition. To assess early ectopic calcification in PXE patients, 18F-NaF-PET-CT may be more relevant than CT imaging. It potentially constitutes a biomarker for disease-modifying anti-calcifying drug assessment in PXE.

14.
Front Physiol ; 11: 952, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973543

RESUMEN

Weightlessness and physical inactivity have deleterious cardiovascular effects. The space environment and its ground-based models offer conditions to study the cardiovascular effects of physical inactivity in the absence of other vascular risk factors, particularly at the macro- and microcirculatory levels. However, the mechanisms involved in vascular dysfunction and remodeling are not sufficiently studied in the context of weightlessness and its analogs including models of physical inactivity. Here, we summarize vascular and microvascular changes induced by space flight and observed in models of microgravity and physical inactivity and review the effects of prophylactic strategies (i.e., countermeasures) on vascular and microvascular function. We discuss physical (e.g., exercise, vibration, lower body negative pressure, and artificial gravity) and nutritional/pharmacological (e.g., caloric restriction, resveratrol, and other vegetal extracts) countermeasures. Currently, exercise countermeasure appears to be the most effective to protect vascular function. Although pharmacological countermeasures are not currently considered to fight vascular changes due to microgravity, nutritional countermeasures are very promising. Dietary supplements/natural health products, especially plant extracts, should be extensively studied. The best prophylactic strategy is likely a combination of countermeasures that are effective not only at the cardiovascular level but also for the organism as a whole, but this strategy remains to be determined.

15.
Front Physiol ; 11: 692, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754043

RESUMEN

The purpose of the study was to investigate the regulatory and metabolic changes in the circulatory system when simulating microgravity conditions in a five-day dry immersion. These changes reflect the adaptation processes characteristic for the initial stages of a space flight or a short-duration space flight. Studies were conducted with 13 healthy male volunteers aged 21 to 29 years. The assessment of regulatory and metabolic processes in the circulatory system was based on the heart rate variability (HRV) and urine proteomic profile analysis. It was found that the restructuring of hemodynamics during 5 days hypogravity begins with the inclusion of the nervous circuit of regulation, and for manifestations at the body fluids protein composition level and activation of the metabolic regulation, these periods are apparently insufficient. Perhaps this is due to the fact that the metabolic regulation, being evolutionarily ancient and genetically determined, is more stable and requires more time for its pronounced activation when stimulated by extreme life conditions.

16.
Front Physiol ; 11: 812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765296

RESUMEN

Current inflight countermeasures do not completely prevent bone and cardiovascular changes induced by microgravity. High load Resistance Exercise combined with whole body Vibration (RVE) demonstrated benefits on bone and cardiovascular system during previous Head-Down Bed Rest (HDBR) studies. We examined the effectiveness of RVE alone or combined with a nutritional supplementation of Whey protein (NeX) on cardiovascular deconditioning. Eight male subjects (age 34 ± 8 years) in a crossover design completed three 21-day HDBR campaigns (Control-CON, RVE, and NeX). Pre and post HDBR Orthostatic Tolerance (OT) was evaluated by a 15-min head-up tilt test followed by increasing levels of Lower Body Negative Pressure (LBNP). Heart rate (HR), blood pressure (BP), and Sympathetic Index (ΣI) through spectral analysis were measured during OT test. Plasma Volume (PV), and Maximal Oxygen Uptake (VO2max) were measured before and after each campaign. Left ventricular mass, left ventricular end diastolic (LVEDV), end systolic (LVESV), stroke (SV) volumes, and circumferential deformation at rest and during an orthostatic stress simulated by a 30 mmHg LBNP were measured by cardiac MRI. RVE failed to prevent any change in these variables and NeX did not have any additional effect over exercise alone. In the 3 groups, (1) OT time dropped similarly (bed rest p < 0.001), (2) HR and ΣI were increased at rest at the end of HDBR and HR increased markedly during LBNP-tilt test, with inability to increase further the ΣI, (3) PV dropped (bed rest p < 0.001), along with LVEDV, LVESV and SV (p = 0.08, p < 0.001, and p = 0.045, respectively), (4) Left ventricle mass did not change significantly, (5) Deformation of the heart assessed by global circumferential strain was preserved and early diastolic circumferential strain rate was increased during orthostatic stress at the end of HDBR, illustrating preserved systolic and diastolic function respectively, without any difference between groups. Despite the drop in PV and LV volumes, RVE and NeX tended to alleviate the decrease in VO2max. In conclusion, RVE and NeX failed to prevent the cardiovascular deconditioning induced by a 21 day-HDBR.

18.
Front Physiol ; 11: 395, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508663

RESUMEN

BACKGROUND: The most applicable human models of weightlessness are -6° head-down bed rest (HDBR) and head-out dry immersion (DI). A detailed experimental comparison of cardiovascular responses in both models has not yet been carried out, in spite of numerous studies having been performed in each of the models separately. OBJECTIVES: We compared changes in central hemodynamics, autonomic regulation, plasma volume, and water balance induced by -6° HDBR and DI. METHODS: Eleven subjects participated in a 21-day HDBR and 12 subjects in a 3-day DI. During exposure, measurements of the water balance, blood pressure, and heart rate were performed daily. Plasma volume evolution was assessed by the Dill-Costill method. In order to assess orthostatic tolerance time (OTT), central hemodynamic responses to orthostatic stimuli, and autonomous regulation, the 80° lower body negative pressure-tilt test was conducted before and right after both exposures. RESULTS: For most of the studied parameters, the changes were co-directional, although they differed in their extent. The changes in systolic blood pressure and total peripheral resistance after HDBR were more pronounced than those after DI. The OTT was decreased in both groups: to 14.2 ± 3.1 min (vs. 27.9 ± 2.5 min before exposure) in the group of 21-day HDBR and to 8.7 ± 2.1 min (vs. 27.7 ± 1.2 min before exposure) in the group of 3-day DI. CONCLUSIONS: In general, cardiovascular changes during the 21-day HDBR and 3-day DI were co-directional. In some cases, changes in the parameters after 3-day DI exceeded changes after the 21-day HDBR, while in other cases the opposite was true. Significantly stronger effects of DI on cardiovascular function may be due to hypovolemia and support unloading (supportlessness).

19.
Int J Mol Sci ; 21(11)2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466473

RESUMEN

Most astronauts experience back pain after spaceflight, primarily located in the lumbar region. Intervertebral disc herniations have been observed after real and simulated microgravity. Spinal deconditioning after exposure to microgravity has been described, but the underlying mechanisms are not well understood. The dry immersion (DI) model of microgravity was used with eighteen male volunteers. Half of the participants wore thigh cuffs as a potential countermeasure. The spinal changes and intervertebral disc (IVD) content changes were investigated using magnetic resonance imaging (MRI) analyses with T1-T2 mapping sequences. IVD water content was estimated by the apparent diffusion coefficient (ADC), with proteoglycan content measured using MRI T1-mapping sequences centered in the nucleus pulposus. The use of thigh cuffs had no effect on any of the spinal variables measured. There was significant spinal lengthening for all of the subjects. The ADC and IVD proteoglycan content both increased significantly with DI (7.34 ± 2.23% and 10.09 ± 1.39%, respectively; mean ± standard deviation), p < 0.05). The ADC changes suggest dynamic and rapid water diffusion inside IVDs, linked to gravitational unloading. Further investigation is needed to determine whether similar changes occur in the cervical IVDs. A better understanding of the mechanisms involved in spinal deconditioning with spaceflight would assist in the development of alternative countermeasures to prevent IVD herniation.


Asunto(s)
Dolor de Espalda/prevención & control , Vendajes de Compresión , Disco Intervertebral/metabolismo , Proteoglicanos/metabolismo , Ingravidez/efectos adversos , Adulto , Dolor de Espalda/etiología , Agua Corporal/metabolismo , Humanos , Disco Intervertebral/diagnóstico por imagen , Región Lumbosacra/diagnóstico por imagen , Masculino , Muslo/irrigación sanguínea , Vasoconstricción
20.
Front Physiol ; 11: 383, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431622

RESUMEN

Venoconstrictive thigh cuffs are used by cosmonauts to ameliorate symptoms associated with cephalad fluid shift. A ground simulation of microgravity, using the dry immersion (DI) model, was performed to assess the effects of thigh cuffs on body fluid changes and dynamics, as well as on cardiovascular deconditioning. Eighteen healthy men (25-43 years), randomly divided into two groups, (1) control group or (2) group with thigh cuffs worn 10 h/day, underwent 5-day DI. Cardiovascular responses to orthostatic challenge were evaluated using the lower body negative pressure (LBNP) test; body fluid changes were assessed by bio-impedance and hormonal assay; plasma volume evolution was estimated using hemoglobin-hematocrit; subjective tolerance was assessed by questionnaires. DI induced a decrease in plasma volume of 15-20%. Reduction in total body water of 3-6% stabilized toward the third day of DI. This reduction was derived mostly from the extracellular compartment. During the acute phase of DI, thigh cuffs limited the decrease in renin and the increase in N-terminal prohormone of brain natriuretic peptide (NT-proBNP), the loss in total body water, and tended to limit the loss in calf volume, extracellular volume and plasma volume. At the later stable phase of DI, a moderate protective effect of thigh cuffs remained evident on the body fluids. Orthostatic tolerance time dropped after DI without significant difference between groups. Thigh cuff countermeasure slowed down and limited the loss of body water and tended to limit plasma loss induced by DI. These observed physiological responses persisted during periods when thigh cuffs were removed. However, thigh cuffs did not counteract decreased tolerance to orthostatic challenge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...