Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 864: 160876, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36539089

RESUMEN

Microplastics (MPs) are ubiquitous in the marine environment, yet information regarding their occurrence in the food web is limited. We investigated the concentration and composition of MPs in water and diverse zooplankton groups from the Arabian Sea basin. Forty-one zooplankton tows were collected with a bongo net (330 µm mesh) from the Arabian Sea in January 2019. MPs in the surface water varied between 0 and 0.055 particles/m3, with a relatively higher concentration (0.013 ± 0.002 particles/m3) in the central Arabian Sea. Though fibrous MPs were most abundant in the seawater (77.14 %), zooplankton prefers small fragments (55.3 %). The size of MPs was distinctly smaller (277.1 ± 46.74 µm) in zooplankton than that in seawater (864.32 ± 73.72 µm), and MPs bioaccumulation was observed in almost all the zooplankton functional groups. Polymer composition revealed polyamide, polyethylene, polypropylene, and PVC were abundant in water and zooplankton, suggesting that the textile, fishing, shipping, and packaging industries are significant sources. The prevailing northeasterly winds, strong West India Coastal Current, and conducive westward radiated Rossby wave during January 2019 have carried the microplastic contaminated water mass away from the coast, posing a threat to the open ocean ecosystems. These results demand further attention to investigate the state of plastic pollution in the Arabian Sea basin.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Zooplancton , Plásticos , Cadena Alimentaria , Océano Índico , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua
2.
Mar Pollut Bull ; 169: 112549, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34182201

RESUMEN

Deep-sea bacteria when grown in normal environmental conditions get morphologically and genetically adapted to resist the provided culture conditions for their survival, making them a possible aspirant in mercury bioremediation. In this study, seawater samples were collected from different depths of the Central Indian Ocean and seven mercury resistant bacteria (resistant to 100 mg L-1 concentration of inorganic Hg as HgCl2) were isolated. Based on 16S rRNA gene sequencing, the identified isolates belong to the genera Pseudomonas, Bacillus and Pseudoalteromonas. The presence of the merA gene in the isolates contributes to the effective volatilization of mercury. The Inductively Coupled Plasma Mass-Spectroscopy analysis revealed that the isolates can reduce up to >80% of inorganic mercury. Moreover, Fourier Transform Infrared spectrum analysis indicates that functional groups play a key role in the mechanism of adaptation towards Hg2+ reduction. Thus, the deep-sea bacteria expressed significant tolerance and reduction potential towards ionic mercury.


Asunto(s)
Mercurio , Bacterias/genética , Biodegradación Ambiental , Océano Índico , ARN Ribosómico 16S
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...