Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
F1000Res ; 12: 107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106650

RESUMEN

This review was aimed at summarizing the cellular and molecular mechanisms behind the various pharmacological actions of biochanin-A. Many studies have been reported claiming its application in cancers, metabolic disorders, airway hyperresponsiveness, cardiac disorders, neurological disorders, etc. With regard to hormone-dependent cancers like breast, prostate, and other malignancies like pancreatic, colon, lung, osteosarcoma, glioma that has limited treatment options, biochanin-A revealed agreeable results in arresting cancer development. Biochanin-A has also shown therapeutic benefits when administered for neurological disorders, diabetes, hyperlipidaemia, and other chronic diseases/disorders. Isoflavones are considered phenomenal due to their high efficiency in modifying the physiological functions of the human body. Biochanin-A is one among the prominent isoflavones found in soy (glycine max), red clover (Trifolium pratense), and alfalfa sprouts, etc., with proven potency in modulating vital cellular mechanisms in various diseases. It has been popular for ages among menopausal women in controlling symptoms. In view of the multi-targeted functions of biochanin-A, it is essential to summarize it's mechanism of action in various disorders. The safety and efficacy of biochanin-A needs to be established in clinical trials involving human subjects. Biochanin-A might be able to modify various systems of the human body like the cardiovascular system, CNS, respiratory system, etc. It has shown a remarkable effect on hormonal cancers and other cancers. Many types of research on biochanin-A, particularly in breast, lung, colon, prostate, and pancreatic cancers, have shown a positive impact. Through modulating oxidative stress, SIRT-1 expression, PPAR gamma receptors, and other multiple mechanisms biochanin-A produces anti-diabetic action. The diverse molecular mechanistic pathways involved in the pharmacological ability of biochanin-A indicate that it is a very promising molecule and can play a major impact in modifying several physiological functions.


Asunto(s)
Isoflavonas , Neoplasias , Masculino , Femenino , Humanos , Isoflavonas/farmacología , Glycine max , Neoplasias/tratamiento farmacológico
2.
Life Sci ; 330: 122027, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597767

RESUMEN

AIMS: Acute lung inflammation, particularly acute respiratory distress syndrome (ARDS), is caused by a variety of pathogens including bacteria and viruses. ß-Glucans have been reported to possess both anti-inflammatory and immunomodulatory properties. The current study evaluated the therapeutic effect of ß-glucans on polyinosinic:polycytidylic acid (Poly(I:C)) induced lung inflammation in both hamster and mice models. MAIN METHODS: Poly(I:C)-induced ALI/inflammation models were developed in hamsters (2.5 mg/kg) and mice (2 mg/kg) by delivering the Poly(I:C) intratracheally, and followed with and without ß-glucan administration. After treatment, lung mechanics were assessed and lung tissues were isolated and analyzed for mRNA/protein expression, and histopathological examinations. KEY FINDINGS: Poly(I:C) administration, caused a significant elevation of inflammatory marker's expression in lung tissues and showed abnormal lung mechanics in mice and hamsters. Interestingly, treatment with ß-glucan significantly (p < 0.001) reversed the Poly(I:C)-induced inflammatory events and inflammatory markers expression in both mRNA (IL-6, IL-1ß, TNF-α, CCL2 and CCL7) and protein levels (TNF-α, CD68, myeloperoxidase, neutrophil elastase, MUC-5Ac and iNOS). Lung functional assays revealed that ß-glucan treatment significantly improved lung mechanics. Histopathological analysis showed that ß-glucan treatment significantly attenuated the Poly(I:C) induced inflammatory cell infiltration, injury and goblet cell population in lung tissues. Consistent with these findings, ß-glucan treatment markedly reduced the number of neutrophils and macrophages in lung tissues. Our findings further demonstrated that ß-glucan could reduce inflammation by suppressing the MAPK pathway. SIGNIFICANCE: These results suggested that ß-glucan may attenuate the pathogenic effects of Poly(I:C)-induced ALI/ARDS via modulating the MAPK pathway, indicating ß-glucan as a possible therapeutic agent for the treatment of viral-pulmonary inflammation/injury.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Síndrome de Dificultad Respiratoria , Virosis , Cricetinae , Animales , Ratones , Factor de Necrosis Tumoral alfa , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Caliciformes
3.
3 Biotech ; 12(9): 230, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35992895

RESUMEN

Organelle crosstalk is significant in regulating their respective functions and subsequent cell fate. Mitochondria and lysosomes are amongst the essential organelles in maintaining cellular homeostasis. Mitochondria-lysosome connections, which may develop dynamically in the human neurons, have been identified as sites of bidirectional communication. Aberrancies are often associated with neurodegenerative disorders like Parkinson's disease (PD), suggesting the physical and functional link between these two organelles. PD is often linked with genetic mutations of several mutations discovered in the familial forms of the disease; some are considered risk factors. Many of these genes are either associated with mitochondrial function or belong to endo-lysosomal pathways. The recent investigations have indicated that neurons with mutant glucosylceramidase beta (GBA1) exhibit extended mitochondria-lysosome connections in individuals with PD. This may be due to impaired control of the untethering protein, which aids in the hydrolysis of Rab7 GTP required for contact untethering. A GCase modulator may be used to augment the reduced GBA1 lysosomal enzyme activity in the neurons of PD patients. This review focuses on how GBA1 mutation in PD is interlinked with mitochondria-lysosome (ML) crosstalk, exploring the pathways governing these interactions and mechanistically comprehending the mitochondrial and lysosomal miscommunication in the pathophysiology of PD. This review is based on the limited literature available on the topic and hence may be subject to bias in its views. Our estimates may be conservative and limited due to the lack of studies under the said discipline due to its inherent complex nature. The current association of GBA1 to PD pathogenesis is based on the limited scope of study and further research is necessary to explore the risk factors further and identify the relationship with more detail.

4.
Curr Drug Targets ; 22(10): 1121-1128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33494673

RESUMEN

Statins have transformed the treatment of cardiovascular diseases through primary and secondary prevention of events. Despite the success of statin's management of cardiovascular conditions, certain clinical trials, reviews, and meta-analysis point out that statins have the propensity to induce diabetes. The risk further increases with intensive statin therapy or in patients with diabetes. A proper mechanism for the induction of the diabetic condition has not yet been determined. The involvement of statin with beta cells in insulin secretion and peripheral cells in insulin resistance has been widely studied and established. The present review provides an update on the recent understanding of statin-induced diabetes. This covers the origin of statins, their development, possible mechanisms that explain the adverse effects in glucose homeostasis, and probable targets to remedy the condition.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Resistencia a la Insulina , Células Secretoras de Insulina , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus/inducido químicamente , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos
5.
3 Biotech ; 10(10): 443, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33014686

RESUMEN

Botroclot is a marketed preparation containing hemocoagulase, which is an enzyme having coagulant activity, isolated from the snake Botrops atrox. This formulation is used in dental surgeries and other minor surgical wounds. However, the formulation remains untested in diabetic wounds. Hence, we proposed a study for the topical application of Botroclot in high-fat diet (HFD) + Streptozotocin (STZ) induced diabetic rats. HFD was fed initially to rats which facilitates the development of insulin resistance. Thereafter, an injection of STZ (40 mg/kg, i.p.) was given. This resulted in the development of diabetes with elevated fasting glucose and impaired glucose tolerance. After stabilization of blood glucose values, wounds were created by punch biopsy on the dorsal side of the palm of the rat to mimic the diabetic wounds frequently seen in the case of humans. Later, the application of Botroclot on these wounds was carried out for 15 days. Topical application of hemocoagulase improved the wound closure and there was a gradual decrease in inflammatory markers and a substantial increase in collagen deposition occurred. Histopathological findings indicated the same, with an increase in granulation tissue suggesting that the topical application moderately improves the wound healing in diabetic rats. We conclude that Botroclot can have a mild to moderate effect in improving collagen deposition and thus wound contraction, improving wound closure in diabetic wounds in rats. This study also establishes the basis for exploration of agents from venom-based sources in diabetic wound healing.

6.
J Environ Pathol Toxicol Oncol ; 38(2): 153-163, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31679278

RESUMEN

Chemobrain is a significant post-chemotherapy complication for which no approved treatments are available. We had previously identified that rutin inhibits doxorubicin (Dox-) -induced cognitive decline in healthy rats. However, it was important to also establish that it does so in rats with mammary carcinoma without compromising Dox's antitumor potential. Mammary carcinoma was induced in female rats by intraperitonial administration of N-methyl-N-nitrosourea (i.p.). Rats that developed mammary carcinoma were treated with Dox after pretreatment with vehicle or rutin. After Dox exposure (50 days), episodic and spatial memory was assessed using the novel object recognition task and the Morris water maze, respectively. Tumor progression was evaluated by measurement of tumor weight and volume and histological analysis. Blood samples were collected to estimate hematological parameters. Oxidative status and TNF-α levels were estimated in brain homogenates. Dox treatment significantly reduced tumor size and volume. Pretreatment with rutin did not significantly alter Dox's tumor suppression potential, suggesting that it does not influence Dox's anticancer activity. In addition, rutin ameliorated Dox-induced cognitive decline, myelosuppression, and brain oxidative stress. The present study indicates that rutin protects against Dox-induced cognitive decline and myelosuppression without affecting its antitumor potential.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/inducido químicamente , Doxorrubicina/farmacología , Metilnitrosourea/toxicidad , Sustancias Protectoras/farmacología , Rutina/farmacología , Animales , Disfunción Cognitiva/inducido químicamente , Doxorrubicina/toxicidad , Femenino , Ratas , Ratas Sprague-Dawley
7.
J Environ Pathol Toxicol Oncol ; 37(1): 63-80, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773001

RESUMEN

In this study, we aimed to develop an experimental animal model for type 2 diabetes mellitus (T2DM) using a combination of monosodium glutamate (MSG) and high sucrose diet (HSD). Young male Wistar rats (20-30 g) were injected with MSG (2 or 4 mg/g, i.p. for 4 days). These rats were also fed an HSD, while the control group was fed a starch diet (SFD) for 150 days. Parameters assessed periodically were body weight, feed intake, blood glucose level, and oral glucose tolerance test (OGTT), lipid profile, liver and kidney function tests, skeletal muscle glucose uptake, cognitive function tests, and microvascular changes using isolated rat aorta. Histological changes in pancreas, liver, and kidney tissue were assessed using hematoxylin and eosin staining, whereas brain tissue was assessed using cresyl violet stain. Feeding MSG in combination with HSD in rats significantly increased body weight, and produced hyperglycemia, dyslipidemia, and hyperinsulinemia. Animals developed frank diabetic complications, which included insulin resistance in skeletal muscle, hypertension, vascular dysfunction, nephropathy, and dementia. Histological studies revealed neuronal loss with necrotic bodies in the brain, reduction in glomerular count in kidney, and severe hypertrophy and hyperplasia in the islets of Langerhans. These results indicate the successful induction of type-2 diabetes along with several diabetic complications by combining MSG with HSD.


Asunto(s)
Diabetes Mellitus Tipo 2/inducido químicamente , Sacarosa en la Dieta/toxicidad , Modelos Animales de Enfermedad , Trastornos de la Memoria/inducido químicamente , Glutamato de Sodio/toxicidad , Enfermedades Vasculares/inducido químicamente , Animales , Relación Dosis-Respuesta a Droga , Aromatizantes/toxicidad , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
8.
J Environ Pathol Toxicol Oncol ; 36(2): 121-130, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29199593

RESUMEN

The present study was aimed at assessing the protective effect of insulin against doxorubicin (DOX)-induced cognitive dysfunction in Wistar rats. Cognitive function for episodic memory was assessed by a novel object recognition task (NORT) in male Wistar rats. Oxidative stress markers-SOD, catalase, glutathione, and lipid peroxidation-in the hippocampus and frontal cortex were assessed using colorimetric methods. Doxorubicin treatment (2.5 mg/kg, i.p., every 5 days for 50 days) reduced recognition and discriminative indices in NORT with increased oxidative stress in the brain. A nonhypoglycemic dose of insulin (0.5 IU/kg, i.p.) significantly reduced brain oxidative stress (MDA) induced by doxorubicin with an increase in the antioxidant defense systems (SOD, catalase, and GSH). Rats treated with combined insulin and DOX spent comparatively more time with the novel object when compared to the non-novel objects; however, the observed difference was not statistically significant. An apparent improvement (p < 0.26) in recognition of the novel object was observed against the damage induced by doxorubicin. These results suggest that insulin reduces brain oxidative stress and apparently improves doxorubicin-induced cognitive dysfunction in Wistar rats.


Asunto(s)
Disfunción Cognitiva/terapia , Insulina/farmacología , Memoria Episódica , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/inducido químicamente , Doxorrubicina/toxicidad , Masculino , Ratas , Ratas Wistar
9.
Biomed Pharmacother ; 96: 736-741, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29049976

RESUMEN

BACKGROUND: Increasing number of scientific reports have highlighted the role of histone acetylation/deacetylation in neurodegenerative conditions, including chemotherapy-induced cognitive dysfunction (also known as chemobrain). Multiple sources state that increased activity of histone deacetylases (HDACs) play a detrimental role in chemobrain. In the present study, sodium valproate, a well-known HDAC inhibitor, was explored for its neuroprotective potential against chemobrain development. METHODS: Doxorubicin (DOX), a chemotherapeutic agent, was used to induce chemobrain in experimental animals while treating with sodium valproate simultaneously. The animals were subjected to novel object recognition test (NORT) in order to assess their cognitive status and further, brain antioxidant levels were estimated. The animal body weights and survival were noted throughout the period of the study. Blood parameters such as red blood cell count, white blood cell count and haemoglobin levels were also measured. RESULTS: Our findings are in contradiction to the known neuroprotective properties of valproic acid. We observed that sodium valproate failed to prevent chemobrain development in DOX treated animals. In fact, treatment with sodium valproate dose dependently worsened cognitive status in DOX treated animals including their brain antioxidant status, possibly leading to neuronal damage through free radical induced toxicity. CONCLUSION: The present study highlights the caution that needs to be exercised in projecting HDAC inhibitors as in vivo neuroprotective agents, due to the complexity of existing neurological pathways and the diverse roles of histone deacetylases.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Doxorrubicina/efectos adversos , Ácido Valproico/farmacología , Acetilación/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar
10.
Drug Des Devel Ther ; 11: 1011-1026, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28408800

RESUMEN

Doxorubicin (DOX) is the most widely used broad-spectrum anticancer agent, either alone or in combination, for most cancers including breast cancer. Long-term use of chemotherapeutic agents to treat breast cancer patients results in cognitive complications with a negative impact on survivors' quality of life. The study objective was to evaluate rutin (RUT) for its neuroprotective effect against DOX in human neuroblastoma (IMR32) cells in vitro and study its potential to ameliorate DOX-induced cognitive dysfunction in Wistar rats. Cell viability assay (3-[4,5 dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), neurite growth assay, detection of apoptosis by (acridine orange/ethidium bromide) staining, intracellular reactive oxygen species (ROS) assay, and flowcytometric analysis were carried out to assess neuroprotective potential against DOX. An in vivo study was conducted for assessing protective effect of RUT against memory deficit associated with DOX-induced chemobrain using object recognition task (ORT). Locomotion was assessed using open field test. Serum biochemistry, acetylcholinesterase, oxidative stress markers in hippocampus, and frontal cortex were assessed. Histopathological analysis of major organ systems was also carried out. Prior exposure to RUT at 100 µM protected IMR32 cells from DOX (1 µM) neurotoxicity. DOX exposure resulted in increased cellular death, apoptosis, and intracellular ROS generation with inhibition of neurite growth in differentiated IMR32 cells, which was significantly ameliorated by RUT. Cognitive dysfunction was induced in Wistar rats by administering ten cycles of DOX (2.5 mg/kg, intra-peritoneal, once in 5 days), as we observed significant impairment of episodic memory in ORT. Coadministration with RUT (50 mg/kg, per os) significantly prevented memory deficits in vivo without any confounding influence on locomotor activity. RUT also offered protection against DOX-induced myelosuppression, cardiotoxicity, and nephrotoxicity. In conclusion, RUT may be a possible adjuvant therapeutic intervention to alleviate cognitive and other complications associated with DOX chemotherapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Trastornos de la Memoria/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Rutina/farmacología , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Femenino , Humanos , Trastornos de la Memoria/inducido químicamente , Neuronas/patología , Fármacos Neuroprotectores/administración & dosificación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Rutina/administración & dosificación , Células Tumorales Cultivadas
11.
Biomed Pharmacother ; 84: 1419-1427, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27802902

RESUMEN

Orchids of the genus Bulbophyllum have been reported to possess antitumor activity. Present study investigated the possible antitumor activity of the active fraction of bulb and root of Bulbophyllum sterile. Alcoholic extract along with petroleum ether, dichloromethane and ethyl acetate fractions were subjected to SRB assay in HCT-116, MDA-MB-231 and A549 cell lines. The active fractions were further evaluated for apoptosis, expression of apoptotic signaling proteins, comet assay and cell cycle analysis. Furthermore, they were assessed for in vivo antitumor activity in Ehrlich ascites carcinoma model. Petroleum fraction of bulbs (PFB) and roots (PFR) was found to be most active in HCT-116 cell lines with IC50 value of 94.2±6.0 and 75.7±9.8, respectively. Apoptosis was evident from acridine orange/ethidium bromide staining along with the expression of phospho-p53 and phospho-Bad. Both PFB and PFR arrested G2/M phase of the cell cycle with 32.6% and 49.4% arrest, respectively compared to 17.5% arrest with control. An increase in mean life span and hepatic antioxidant levels was observed with PFB and PFR treatment in EAC inoculated mice. The results suggested that the active fractions of bulbs and roots possess anticancer activity likely by inducing apoptosis through phospho-p53 dependent pathway.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma de Ehrlich/tratamiento farmacológico , Orchidaceae , Petróleo , Extractos Vegetales/uso terapéutico , Células A549 , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Apoptosis/fisiología , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patología , Progresión de la Enfermedad , Femenino , Células HCT116 , Humanos , Ratones , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Raíces de Plantas
12.
Front Pharmacol ; 7: 381, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790148

RESUMEN

We had previously demonstrated the anti-diabetic potential and pancreatic protection of two thiazolidin-4-one derivatives containing nicotinamide moiety (NAT-1 and NAT-2) in STZ-induced diabetic mice. However, due to the limitations of the STZ model, we decided to undertake a detailed evaluation of anti-diabetic potential of the molecules on a high sucrose diet (HSD) fed diabetic mouse model. Further, in vitro mechanistic studies on the phosphorylation of AMPK, Akt and p38 MAP kinase in L6 myotubes and anti-inflammatory studies in RAW264.7 mouse monocyte macrophage cells were performed. 15 months of HSD induced fasting hyperglycaemia and impaired glucose tolerance in mice. Treatment with NAT-1 and NAT-2 (100 mg/kg) for 45 days significantly improved the glucose tolerance and lowered fasting blood glucose levels compared to untreated control. An improvement in the elevated triglycerides and total cholesterol levels, and favorable rise in HDL cholesterol were also observed with test drug treatment. Also, no major changes were observed in the liver (albumin, AST and ALT) and kidney (creatinine and urea) parameters. This was further confirmed in their respective histology profiles which revealed no gross morphological changes. In L6 cells, significant phosphorylation of Akt and p38 MAP kinase proteins were observed with 100 µM of NAT-1 and NAT-2 with no significant changes in phosphorylation of AMPK. The molecules failed to exhibit anti-inflammatory activity as observed by their effect on the generation of ROS and nitrite, and nuclear levels of NF-κB in LPS-stimulated RAW264.7 cells. In summary, the molecules activated Akt and p38 MAP kinase which could have partly contributed to their anti-hyperglycaemic and hypolipidemic activities in vivo.

13.
Pharmacogn Mag ; 12(Suppl 4): S441-S445, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27761072

RESUMEN

BACKGROUND: Colon cancer (CC) is the third commonly diagnosed cancer and the second leading cause of mortality in the US when compared to India where prevalence is less. Possible reason could be the vegetarian diet comprising spices used in curry powders. Researchers believe that 70% of the cases are associated with diet. Spices have inherited a rich tradition for their flavor and medicinal properties. Researchers have been oriented towards spices present in food items for their antitumorigenic properties. OBJECTIVE: We investigated the effects of sambar as a preventive measure for 1,2-dimethyl hydrazine (DMH)-induced CC in Wistar albino rats. MATERIALS AND METHODS: The animals were divided into three groups (n = 6) namely control, DMH, and sambar. At the end of the experimental period, the animals were killed using anesthesia and the colons and livers were examined. RESULTS: All the treatment groups exhibited a significant change in the number of aberrant crypt foci (ACF). Sambar group showed a significant change in the colonic GSH when compared to both normal and DMH groups. A significant reduction in the liver GSH was noted in the sambar group. Only sambar group showed a significant change in the liver catalase levels when compared to DMH. There was a significant reduction in the colonic nitrite in the sambar-treated group; 2.94 ± 0.29 when compared to DMH control at 8.09 ± 1.32. On the contrary, a significant rise in the liver nitrite levels was observed in the sambar-treated rats. CONCLUSION: Sambar may prevent the risk of CC when consumed in dietary proportions. SUMMARY: Consumption of sambar significantly reduced aberrant crypt foci in DMH-induced colon cancer modelSambar treatment prevented DMH-induced oxidative changes in the colonic tissue, indicating its antioxidant roleSambar comprises a variety of spices that exhibited both pro- and antioxidant properties in different tissues, leading to its overall beneficial effect in this model. Abbreviations used: ACF: aberrant crypt foci, CC: colon cancer, DMH: 1,2-dimethyl hydrazine, GSH: glutathione, IL-6: Interleukin-6, TNF-α: Tumor necrosis factor-alpha.

14.
Eur J Pharm Sci ; 91: 74-83, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27283483

RESUMEN

The promising role of thiazolidin-4-ones (TZOs) against inflammatory conditions has been reported. From our lab, one of the TZO derivatives, compound 4C, exerted anti-inflammatory potential via inhibition of locally released cytokines and prostaglandin. In continuance, a detailed study was undertaken for the preclinical profiling of this promising TZO derivative against polyarthritis in rats, along with assessment of risk associated with the treatment. Male Sprague-Dawley rats were used for the adjuvant-induced arthritis (AIA) model. Based on the development of secondary lesion, the animals were randomized into different treatment groups. To establish the efficacy of the test compound, parameters such as inflammation, pain, disease progression, cytokines and prostaglandin (PG)-E2 levels and complete blood cell profile were recorded along with radiological and histological examinations of joints. The study also focused on evaluating the side effect of test compound on gastric, liver, renal, blood and cardiovascular components. Compound 4C exerted promising therapeutic effect against secondary lesions in polyarthritis in rats. It limited the progression of chronic inflammation and associated pain in rats. Modulation of cytokine signalling and arachidonate metabolism by 4C was evident from inhibition of interleukin (IL)-6, tumor necrosis factor (TNF)-α and PGE2 generation in AIA rats. Comparatively, compound 4C was safer than diclofenac to cause gastric, liver, renal, blood and cardiovascular toxicities. These finding supports the efficacy and safety profile of 4C, a TZO derivative in limiting the progression of arthritis when administered orally.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Dolor/tratamiento farmacológico , Tiazolidinas/uso terapéutico , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Artritis Experimental/diagnóstico por imagen , Artritis Experimental/metabolismo , Artritis Experimental/patología , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Presión Sanguínea/efectos de los fármacos , Dinoprostona/metabolismo , Articulaciones del Pie/diagnóstico por imagen , Articulaciones del Pie/efectos de los fármacos , Articulaciones del Pie/patología , Mucosa Gástrica/anatomía & histología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Calor , Hiperalgesia/diagnóstico por imagen , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/patología , Interleucina-6/metabolismo , Masculino , Dolor/diagnóstico por imagen , Dolor/metabolismo , Dolor/patología , Radiografía , Ratas Sprague-Dawley , Tiazolidinas/farmacología , Tacto , Factor de Necrosis Tumoral alfa/metabolismo
15.
Chem Biol Interact ; 253: 112-24, 2016 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-27163855

RESUMEN

Multiple genetic mutations along with unusual epigenetic modifications play a major role in cancer development. Histone deacetylase (HDAC) enzyme overexpression observed in the majority of cancers is responsible for tumor suppressor gene silencing and activation of proto-oncogenes to oncogenes. Cinnamic acid derivatives exhibit anti-cancer potential through HDAC enzyme inhibition. We have synthesized a few cinnamyl sulfonamide hydroxamate derivatives (NMJ-1, -2 and -3) by already published in-house procedures and their purity, and chemical characterization were performed by NMR, mass spectrometry and elemental analysis. The anti-cancer activities were also evaluated against colon cancer. The rationale for synthesis was based on bioisosterism concept. To take the work forward, these compounds were considered for in vitro anti-angiogenic and anti-metastatic activities in cancer cells. The effectiveness of these compounds was determined by SRB assay. The compounds showed cancer cell cytotoxicity (IC50 range of 5.7 ± 0.43 to 20.5 ± 1.9 µM). The mechanism of compound-induced cell death involves an intrinsic apoptosis pathway which was supported by the following: increase in apoptotic index, arrest in cell cycle at G2/M phase, increase in annexin V binding and induction of p21(Waf1/Cip1) expression in the treated cells. Further, their target modulating effect, measured as the expression of acetyl-H3 histone and acetyl α-tubulin was determined by Western blots. Hyper acetylation of H3 histone and α-tubulin were observed. Furthermore, increased expression of cleaved caspase-3, cleaved PARP, total Bad was estimated by ELISA. The anti-angiogenic effect was examined through cobalt (II) chloride (CoCl2)-induced HIF-1α expression, where the compounds reduced the expression of induced HIF-1α. In addition, their anti-metastatic ability was determined through phorbol-12-myristate-13-acetate (PMA)-induced expression of MMP-2 and -9 by Western blotting and gelatin zymography. Inhibition of malignant cell migration was assessed by scratch wound assay. The compounds showed a decrease in cell migration and inhibition of induced MMP-2 and MMP-9 expression. NMJ-2 exhibited comparable activity to that of standard SAHA. Our findings indicate that NMJ series of compound have potent in vitro anti-cancer, anti-angiogenic and anti-metastatic activity through HDAC enzyme inhibition.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Inhibidores de Histona Desacetilasas/toxicidad , Ácidos Hidroxámicos/toxicidad , Células A549 , Acetilación/efectos de los fármacos , Western Blotting , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cobalto/toxicidad , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células MCF-7 , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ésteres del Forbol/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sulfonamidas/química , Tubulina (Proteína)/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
J Ethnopharmacol ; 186: 159-168, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27058632

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Glycosmis pentaphylla (Retz.) DC (Rutaceae) has been traditionally used for the treatment of rheumatism, cancer, liver disorders, inflammation etc. AIM OF THE STUDY: The present study is aimed at elucidating the effect of Glycosmis pentaphylla (Retz.) DC on the key markers of apoptosis, metastasis and angiogenesis, in vitro. The study also evaluated the effect of fractions in vivo in DMBA-induced mammary tumor model. MATERIALS AND METHODS: Fractions of Glycosmis pentaphylla (Retz.) DC leaf extracts was studied for their effect on apoptotic markers in breast cancer cell lines, MCF-7 and MDA-MB-231 cells. They were also studied for their effect on metastatic and angiogenic markers, MMP-9 and HIF-1α in MCF-7 cells. The fractions were studied in vivo in DMBA-induced mammary tumor model in Sprague Dawley rats. RESULTS: The studies showed that the fractions induced apoptosis in breast cancer cells through the intrinsic/mitochondrial apoptotic pathway. The fractions were also able to inhibit the metastatic and angiogenic markers, MMP-9 and HIF-1α. Anti-tumor studies in DMBA-induced mammary model in Sprague Dawley rats also showed favorable results.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Rutaceae/química , Animales , Antineoplásicos Fitogénicos/química , Biomarcadores de Tumor , Neoplasias de la Mama/inducido químicamente , Catalasa , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido , Neoplasias Experimentales/tratamiento farmacológico , Nitratos , Nitritos , Ratas , Ratas Sprague-Dawley
18.
Pharmacogn Mag ; 12(Suppl 1): S63-70, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27041861

RESUMEN

BACKGROUND: Cognitive decline or dementia is a debilitating problem of neurological disorders such as Alzheimer's and Parkinson's disease, including special conditions like chemobrain. Dietary flavonoids proved to be efficacious in delaying the incidence of neurodegenerative diseases. Two such flavonoids, naringin (NAR) and rutin (RUT) were reported to have neuroprotective potential with beneficial effects on spatial and emotional memories in particular. However, the efficacy of these flavonoids is poorly understood on episodic memory, which comprises an important form of autobiographical memory. OBJECTIVE: This study objective is to evaluate NAR and RUT to reverse time-delay-induced long-term and scopolamine-induced short-term episodic memory deficits in Wistar rats. MATERIALS AND METHODS: We have evaluated both short-term and long-term episodic memory forms using novel object recognition task. Open field paradigm was used to assess locomotor activity for any confounding influence on memory assessment. Donepezil was used as positive control and was effective in both models at 1 mg/kg, i.p. RESULTS: Animals treated with NAR and RUT at 50 and 100 mg/kg, p.o. spent significantly more time exploring novel object compared to familiar one, whereas control animals spent almost equal time with both objects in choice trial. NAR and RUT dose-dependently increased recognition and discriminative indices in time-induced long-term as well as scopolamine-induced short-term episodic memory deficit models without interfering with the locomotor activity. CONCLUSION: We conclude that, NAR and RUT averted both short- and long-term episodic memory deficits in Wistar rats, which may be potential interventions for neurodegenerative diseases as well as chemobrain condition. SUMMARY: Incidence of Alzheimer's disease is increasing globally and the current therapy is only symptomatic. Curative treatment is a major lacuna. NAR and RUT are natural flavonoids proven for their pleiotropic pharmacological effects with potential neuroprotective benefits. The study evaluated these flavonoids for their potential to improve the most common form of episodic memory (memory of autobiographical events in relation to time, places etc.) in two differential animal models assessing short-term and long-term memory, respectively. We also found that NAR and RUT were able to reverse both short-term and long-term memory deficits dose dependently in female Wistar rats. Abbreviations used: AD: Alzheimer's disease, AChE: Acetylcholinesterase, COX: Cyclooxygenase, DI: Discriminative index, ITI: Inter trial interval, NAR: Naringin, RUT: Rutin, NORT: Novel object recognition task, NOS: Nitric oxide synthase, QOL: Quality of life, RI: Recognition index, WFI: Water for injection.

19.
Cytotechnology ; 68(4): 861-77, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25701190

RESUMEN

Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential.

20.
Pharmacogn Mag ; 11(Suppl 2): S296-302, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26664018

RESUMEN

BACKGROUND: The present study was aimed at examining the effect of dehydrozingerone (DHZ), half analogue of curcumin which is the active constituent of turmeric (Curcuma longa) in the di-nitrochlorobenzene (DNCB) induced model for inflammatory bowel disease (IBD). MATERIALS AND METHODS: Male Wistar rats (200-220 g) were divided into four groups (n = 6). Chemical induction of IBD was done by sensitizing with 300 µL of 20 g/L of DNCB (in acetone) onto the nape of rats for 14 days followed by intra-colonic instillation of 250 µL of DNCB (0.1% DNCB in 50% alcohol) solution on day 15. Rats in Group 1 (normal control) and Group 2 (DNCB control) were treated with vehicle. Rats in Group 3 were treated with DHZ (100 mg/kg, p.o.; 8 days) and Group 4 animals were treated with sulfasalazine (SS) (100 mg/kg, p.o.; 8 days). On 24(th) day, the rats were killed, colon removed and the macroscopic, biochemical, and histopathological evaluations were performed. RESULTS: The levels of myeloperoxidase, thiobarbituric acid reactive substrate, and nitrite increased significantly (P < 0.05) in the DNCB group whereas reduced significantly in the DHZ and SS treated groups. Serum nitrite levels were found to be insignificant between the different groups. Interleukin-6, tumor necrosis factor-alpha level was significantly high in the DNCB group. CONCLUSION: These findings show that DHZ can be a promising molecule for the treatment of IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA