Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135583, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270899

RESUMEN

The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.


Asunto(s)
Embalaje de Alimentos , Nanocompuestos , Embalaje de Alimentos/métodos , Nanocompuestos/química , Biopolímeros/química
2.
Food Chem ; 460(Pt 1): 140545, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047488

RESUMEN

Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.


Asunto(s)
Emulsiones , Conservación de Alimentos , Frutas , Aceites Volátiles , Verduras , Verduras/química , Frutas/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Emulsiones/química , Antioxidantes/química , Antioxidantes/farmacología , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Nanopartículas/química
3.
Prep Biochem Biotechnol ; : 1-16, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995873

RESUMEN

The extraction of phytocompounds from Achocha (Cyclanthera pedata) vegetable juice using traditional methods often results in suboptimal yields and efficiency. This study aimed to enhance the extraction process through the application of thermosonication (TS). To achieve this, an artificial neural network (ANN) and a genetic algorithm (GA) were utilized to simulate and optimize the process parameters. The study investigated the influence of ultrasonic amplitude (30%-50%), temperature (30 °C-50 °C), and sonication duration (15-60 min) on total polyphenolic content (TPC), total flavonoid content (TFC), antioxidant activity (AOA), and ascorbic acid content (AA). Remarkably, the ANN-GA optimization resulted in optimal TS conditions: an ultrasonic amplitude of 40%, a temperature of 40 °C, and a sonication duration of 30 min. Subsequent analysis of extraction kinetics and thermodynamics across various temperatures (30 °C-50 °C) and extraction times (0-30 min) demonstrated R2 (0.98821) and χ2 (1.74773) for TPC with activation energy (Ea) 26.0456, R2 (0.99906) and χ2 (0.07215) for TFC with Ea 26.2336, R2 (0.99867) and χ2 (0.03003) for AOA with Ea 26.0987, R2 (0.99731) and χ2 (0.13719) for AA with Ea 26.0984, validating the pseudo second-order kinetic model. These findings indicate that increased temperature enhances the saturation concentration and rate constant of phytochemical extraction.

4.
Int J Biol Macromol ; 273(Pt 2): 133090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878920

RESUMEN

Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.


Asunto(s)
Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Celulosa/química , Biopolímeros/química , Antiinfecciosos/química , Antiinfecciosos/farmacología
5.
Clin Orthop Relat Res ; 482(10): 1896-1908, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813958

RESUMEN

BACKGROUND: Joint-sparing resection of periarticular bone tumors can be challenging because of complex geometry. Successful reconstruction of periarticular bone defects after tumor resection is often performed with structural allografts to allow for joint preservation. However, achieving a size-matched allograft to fill the defect can be challenging because allograft sizes vary, they do not always match a patient's anatomy, and cutting the allograft to perfectly fit the defect is demanding. QUESTIONS/PURPOSES: (1) Is there a difference in mental workload among the freehand, patient-specific instrumentation, and surgical navigation approaches? (2) Is there a difference in conformance (quantitative measure of deviation from the ideal bone graft), elapsed time during reconstruction, and qualitative assessment of goodness-of-fit of the allograft reconstruction among the approaches? METHODS: Seven surgeons used three modalities in the same order (freehand, patient-specific instrumentation, and surgical navigation) to fashion synthetic bone to reconstruct a standardized bone defect. National Aeronautics and Space Administration (NASA) mental task load index questionnaires and procedure time were captured. Cone-beam CT images of the shaped allografts were used to measure conformance (quantitative measure of deviation from the ideal bone graft) to a computer-generated ideal bone graft model. Six additional (senior) surgeons blinded to modality scored the quality of fit of the allografts into the standardized tumor defect using a 10-point Likert scale. We measured conformance using the root-mean-square metric in mm and used ANOVA for multipaired comparisons (p < 0.05 was significant). RESULTS: There was no difference in mental NASA total task load scores among the freehand, patient-specific instrumentation, and surgical navigation techniques. We found no difference in conformance root-mean-square values (mean ± SD) between surgical navigation (2 ± 0 mm; mean values have been rounded to whole numbers) and patient-specific instrumentation (2 ± 1 mm), but both showed a small improvement compared with the freehand approach (3 ± 1 mm). For freehand versus surgical navigation, the mean difference was 1 mm (95% confidence interval [CI] 0.5 to 1.1; p = 0.01). For freehand versus patient-specific instrumentation, the mean difference was 1 mm (95% CI -0.1 to 0.9; p = 0.02). For patient-specific instrumentation versus surgical navigation, the mean difference was 0 mm (95% CI -0.5 to 0.2; p = 0.82). In evaluating the goodness of fit of the shaped grafts, we found no clinically important difference between surgical navigation (median [IQR] 7 [6 to 8]) and patient-specific instrumentation (median 6 [5 to 7.8]), although both techniques had higher scores than the freehand technique did (median 3 [2 to 4]). For freehand versus surgical navigation, the difference of medians was 4 (p < 0.001). For freehand versus patient-specific instrumentation, the difference of medians was 3 (p < 0.001). For patient-specific instrumentation versus surgical navigation, the difference of medians was 1 (p = 0.03). The mean ± procedural times for freehand was 16 ± 10 minutes, patient-specific instrumentation was 14 ± 9 minutes, and surgical navigation techniques was 24 ± 8 minutes. We found no differences in procedure times across three shaping modalities (freehand versus patient-specific instrumentation: mean difference 2 minutes [95% CI 0 to 7]; p = 0.92; freehand versus surgical navigation: mean difference 8 minutes [95% CI 0 to 20]; p = 0.23; patient-specific instrumentation versus surgical navigation: mean difference 10 minutes [95% CI 1 to 19]; p = 0.12). CONCLUSION: Based on surgical simulation to reconstruct a standardized periarticular bone defect after tumor resection, we found a possible small advantage to surgical navigation over patient-specific instrumentation based on qualitative fit, but both techniques provided slightly better conformance of the shaped graft for fit into the standardized post-tumor resection bone defect than the freehand technique did. To determine whether these differences are clinically meaningful requires further study. The surgical navigation system presented here is a product of laboratory research development, and although not ready to be widely deployed for clinical practice, it is currently being used in a research operating room setting for patient care. This new technology is associated with a learning curve, capital costs, and potential risk. The reported preliminary results are based on a preclinical synthetic bone tumor study, which is not as realistic as actual surgical scenarios. CLINICAL RELEVANCE: Surgical navigation systems are an emerging technology in orthopaedic and reconstruction surgery, and understanding their capabilities and limitations is paramount for clinical practice. Given our preliminary findings in a small cohort study with one scenario of standardized synthetic periarticular bone tumor defects, future investigations should include different surgical scenarios using allograft and cadaveric specimens in a more realistic surgical setting.


Asunto(s)
Aloinjertos , Neoplasias Óseas , Trasplante Óseo , Cirugía Asistida por Computador , Humanos , Trasplante Óseo/métodos , Neoplasias Óseas/cirugía , Cirugía Asistida por Computador/instrumentación , Cirugía Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico , Procedimientos de Cirugía Plástica/métodos , Procedimientos de Cirugía Plástica/instrumentación , Modelación Específica para el Paciente , Carga de Trabajo , Interpretación de Imagen Radiográfica Asistida por Computador , Sustitutos de Huesos
7.
Foods ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38540838

RESUMEN

Elephant apple, a fruit with numerous bioactive compounds, is rich in therapeutic qualities. However, its use in processed products is limited due to insufficient postharvest processing methods. To address this issue, an automatic core cutter (ACC) was developed to handle the hard nature of the fruit while cutting. The physical characteristics of the elephant apple were considered for designing and development of the cutter. The cutter is divided into four main sections, including a frame, collecting tray, movable coring unit, and cutting base with five fruit holders. The parts that directly contact the fruit are made of food-grade stainless steel. The efficiency of the cutter was analyzed based on cutting/coring capacity, machine efficiency, loss percentage, and other factors, and was compared to traditional cutting methods (TCM) and a foot-operated core cutter (FOCC). The ACC had an average cutting/coring capacity of 270-300 kg/h, which was significantly higher than TCM's capacity of 12-15 kg/h and comparable to FOCC's capacity of 115-130 kg/h. The ACC offered a higher sepal yield of 85.68 ± 1.80% compared to TCM's yield of 65.76 ± 1.35%, which was equivalent to the yield obtained by FOCC. Therefore, the ACC outperforms TCM in terms of quality, quantity, and stress associated and is superior to FOCC in terms of higher efficiency of machine and labor.

8.
Food Chem ; 447: 138945, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38461725

RESUMEN

Artificial intelligence has the potential to alter the agricultural and food processing industries, with significant ramifications for sustainability and global food security. The integration of artificial intelligence in agriculture has witnessed a significant uptick in recent years. Therefore, comprehensive understanding of these techniques is needed to broaden its application in agri-food supply chain. In this review, we explored cutting-edge artificial intelligence methodologies with a focus on machine learning, neural networks, and deep learning. The application of artificial intelligence in agri-food industry and their quality assurance throughout the production process is thoroughly discussed with an emphasis on the current scientific knowledge and future perspective. Artificial intelligence has played a significant role in transforming agri-food systems by enhancing efficiency, sustainability, and productivity. Many food industries are implementing the artificial intelligence in modelling, prediction, control tool, sensory evaluation, quality control, and tackling complicated challenges in food processing. Similarly, artificial intelligence applied in agriculture to improve the entire farming process, such as crop yield optimization, use of herbicides, weeds identification, and harvesting of fruits. In summary, the integration of artificial intelligence in agri-food systems offers the potential to address key challenges in agriculture, enhance sustainability, and contribute to global food security.


Asunto(s)
Inteligencia Artificial , Industria de Procesamiento de Alimentos , Industria de Alimentos , Manipulación de Alimentos , Redes Neurales de la Computación , Agricultura
9.
Foods ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38338632

RESUMEN

This study investigated the quality characteristics of pasteurized and thermosonicated bor-thekera (Garcinia pedunculata) juices (TSBTJs) during storage at 4 °C for 30 days. Various parameters, including pH, titratable acidity (TA), total soluble content (TSSs), antioxidant activity (AA), total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), cloudiness (CI) and browning indexes (BI), and microbial activity, were analyzed at regular intervals and compared with the quality parameters of fresh bor-thekera juice (FBTJ). A multi-layer artificial neural network (ANN) was employed to model and optimize the ultrasound-assisted extraction of bor-thekera juice. The impacts of storage time, treatment time, and treatment temperature on the quality attributes were also explored. The TSBTJ demonstrated the maximum retention of nutritional attributes compared with the pasteurized bor-thekera juice (PBTJ). Additionally, the TSBTJ exhibited satisfactory results for microbiological activity, while the PBTJ showed the highest level of microbial inactivation. The designed ANN exhibited low mean squared error values and high R2 values for the training, testing, validation, and overall datasets, indicating a strong relationship between the actual and predicted results. The optimal extraction parameters generated by the ANN included a treatment time of 30 min, a frequency of 44 kHz, and a temperature of 40 °C. In conclusion, thermosonicated juices, particularly the TSBTJ, demonstrated enhanced nutritional characteristics, positioning them as valuable reservoirs of bioactive components suitable for incorporation in the food and pharmaceutical industries. The study underscores the efficacy of ANN as a predictive tool for assessing bor-thekera juice extraction efficiency. Moreover, the use of thermosonication emerged as a promising alternative to traditional thermal pasteurization methods for bor-thekera juice preservation, mitigating quality deterioration while augmenting the functional attributes of the juice.

10.
Int J Biol Macromol ; 259(Pt 1): 129129, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181913

RESUMEN

Agro-food waste is a rich source of biopolymers such as cellulose, chitin, and starch, which have been shown to possess excellent biocompatibility, biodegradability, and low toxicity. These properties make biopolymers from agro-food waste for its application in tissue engineering and regenerative medicine. Thus, this review highlighted the properties, processing methods, and applications of biopolymers derived from various agro-food waste sources. We also highlight recent advances in the development of biopolymers from agro-food waste and their potential for future tissue engineering and regenerative medicine applications, including drug delivery, wound healing, tissue engineering, biodegradable packaging, excipients, dental applications, diagnostic tools, and medical implants. Additionally, it explores the challenges, prospects, and future directions in this rapidly evolving field. The review showed the evolution of production techniques for transforming agro-food waste into valuable biopolymers. However, these biopolymers serving as the cornerstone in scaffold development and drug delivery systems. With their role in wound dressings, cell encapsulation, and regenerative therapies, biopolymers promote efficient wound healing, cell transplantation, and diverse regenerative treatments. Biopolymers support various regenerative treatments, including cartilage and bone regeneration, nerve repair, and organ transplantation. Overall, this review concluded the potential of biopolymers from agro-food waste as a sustainable and cost-effective solution in tissue engineering and regenerative medicine, offering innovative solutions for medical treatments and promoting the advancement of these fields.


Asunto(s)
Eliminación de Residuos , Ingeniería de Tejidos , Medicina Regenerativa/métodos , Alimento Perdido y Desperdiciado , Alimentos , Polímeros , Biopolímeros
11.
Environ Sci Pollut Res Int ; 31(12): 18143-18156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36656481

RESUMEN

Food product drying is a crucial stage in the preservation of crops and agricultural by-products that are used as raw materials for numerous end applications. The novelty of the study is the application of a phase change material in a solar dryer to improve the effectiveness of drying and reducing the overall drying period for drying while retaining/improving the quality parameters of the dried dhekia (Diplazium esculentum). The modified indirect thermal storage integrated solar dryer made up of a single-pass solar collector is attached with the drying chamber of 16.5 kg capacity. A thermal energy storage system prepared with paraffin wax embedded inside the drying cabinet was used. The proposed solar dryer has a thermal efficiency that is 11 ± 0.2% greater than the conventionally constructed solar dryer and reduces drying time by 40 ± 2.1%. Drying kinetic analysis of dhekia was performed, and two new drying kinetic models were proposed to predict moisture ratio. From statistical analysis, it was found that the chi square value and root mean square error value fits well for the proposed models. The anti-oxidant, total phenolic content, and total flavonoid content values of samples dried in solar dryer exhibit better results compared to fresh, tray dried, and open sun-dried samples. The developed dryer shows better results in saving drying time and quality of the product. Due to its affordability and long-term solution for drying fresh farm goods, this dryer can be very helpful to small-scale farmers.


Asunto(s)
Helechos , Tracheophyta , Cinética , Desecación/métodos , Luz Solar , Antioxidantes
12.
Int J Biol Macromol ; 256(Pt 2): 128517, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040157

RESUMEN

Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Celulosa/química , Aguas Residuales , Ecosistema , Colorantes , Adsorción , Purificación del Agua/métodos
13.
Dalton Trans ; 52(45): 16829-16840, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37909254

RESUMEN

A series of novel amidinate ligated four-coordinated boron compounds, [(Ar)-C(tBuN)2BF2] (1BF2-6BF2), were synthesised and structurally characterised (Ar = 1-phenyl, 2-naphthyl, 2-anthryl, 9-anthryl, 9-phenanthryl and 1-pyrene). The increased π-conjugation of Ar-substitution on the amidinate ligand results in dark blue-emission in compounds 3BF2-6BF2. All these compounds are emissive in the solution state. The 2-anthryl substituted compound 3BF2 was found to exhibit a maximum quantum yield of 48% in dichloromethane. Theoretical studies were carried out which validate the hypothesis about the increased π-conjugation.

14.
Int J Biol Macromol ; 253(Pt 8): 127524, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37865365

RESUMEN

Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.


Asunto(s)
Embalaje de Alimentos , Polímeros , Polisacáridos/química , Celulosa/química , Almidón/metabolismo , Alginatos
15.
Foods ; 12(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37893616

RESUMEN

This study explored the effect of thermosonication on the nutritional properties of lapsi (Choerospondias axillaris) fruit juice. The intent of the present investigation was to process lapsi fruit juice using both thermosonication and thermal pasteurisation and to compare the effects of these treatments on the juice's physicochemical, nutritional, and microbiological qualities. In order to maximise the retention of nutritional properties, enhance juice quality, and boost efficiency, an artificial neural network (ANN) model was also developed to forecast the optimisation of process parameters for the quality of lapsi fruit juice. This study establishes a novel experimental planning method using an ANN to multi-objectively optimise the extraction process and identify the ideal extraction conditions for thermosonication (50, 75, and 100% amplitude at 30, 40, and 50 °C for 15, 30, 45, and 60 min) to augment lapsi juice's nutritional and microbiological properties by improving certain attributes such as ascorbic acid (AA), antioxidant activity (AOA), total phenolic content (TPC), total flavonoid content (TFC), total plate count, and yeast and mould count (YMC). The maximum values for AA (71.80 ± 0.05 mg/100 mL), AOA (74.60 ± 0.28%), TPC (187.33 ± 0.03 mg gallic acid equivalents [GAE]/mL), TFC (127.27 ± 0.05 mg quercetin equivalents [QE]/mL), total plate count (not detected), and YMC were achieved in thermosonicated lapsi juice (TSLJ) under optimal conditions. For AA and TFC, the optimal conditions were 100% amplitude, 40 °C, and 45 min. For AOA and TPC, the optimal conditions were 100% amplitude, 40 °C, and 60 min, and for YMC, the optimal conditions were 100% amplitude, 50 °C, and 60 min. According to the findings, thermosonicated juices have improved nutritional properties, making them an excellent source of bioactive elements for use in both the food and pharmaceutical sectors. According to this study, ANN has been identified as a valuable tool for predicting the effectiveness of lapsi fruit juice extraction, and the application of thermosonication as an approach for lapsi juice preservation could be a potential successor to thermal pasteurisation. This approach can help to minimise or hinder quality degradation while improving the juice's functionality.

16.
Foods ; 12(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37893717

RESUMEN

Food by-products and waste are a boundless source of bioactives, nutraceuticals, and naturally occurring substances that are good for human health. In fact, a lot of by-products and wastes are generated by several food businesses. Therefore, waste management and by-product utilization are the most important aspects of the food sector. According to various studies, many bioactive compounds such as phenolics, carotenoids, and proteins can be recovered as feed stock from various industries' by-products and wastes using potential technologies. As a result, current trends are shifting attention to the sustainable valorisation of food sector waste management and by-products utilization. Thus, the circular economy principles have been applied to the field of food science. The aim of the circular economy is to ensure environmental protection and promote economic development while minimizing the environmental impact of food production. All of these aspects of the circular economy, at present, have become a challenging area of research for by-product valorisation as well. Hence, this review aims to highlight the emerging trends in the efficient utilization of food industry waste and by-products by focusing on innovative encapsulation techniques and controlled release mechanisms of bioactive compounds extracted from food industry waste and by-products. This review also aims to suggest future research directions, and addresses regulatory and toxicity considerations, by fostering knowledge dissemination and encouraging eco-friendly approaches within the food industry. This review reveals the role of encapsulation strategies for the effective utilization of bioactive compounds extracted from food industry waste and by-products. However, further research is needed to address regulatory and toxicity considerations of encapsulated bioactive compounds and health-related concerns.

17.
Perspect Clin Res ; 14(3): 146-151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554245

RESUMEN

Cannabis is one of the world's oldest cultivated plants and the most commonly used recreational drug worldwide. The plant relevant for medicinal use is Cannabis sativa that has two pharmacologically active ingredients - delta-9-tetrahydrocannabinol that is psychoactive and cannabidiol that does not have psychotropic activity. The policy tapestry of Cannabis has undergone a significant change in the past few decades worldwide. Different countries have diverse policies, ranging from classifying use of Cannabis as illicit, to legalization of its use, both for medicinal and recreational purposes. Cannabis products are approved for use, for instance, in multiple sclerosis and Dravet syndrome (US Food Drug and Administration). Against this backdrop, we find that the knowledge foundations for use of Cannabis in clinical trials in India are still evolving. Conducting ethical research within a clinical trials framework is essential to understand dosing, formulation, shelf life, drug-drug interaction, tolerability, and safety before establishing its utility for various indications. In the absence of guidelines or a regulatory framework for conduct of these studies, the various Institutional Ethics Committees (IECs), which are responsible for reviewing projects related to Cannabis, face unique challenges with respect to the basic requirements. The principal investigators (PIs) are equally strained to find local guidance, recommendations, and literature in support of their application to the respective IEC, thus leading to an impasse and delay in initiating the proposed clinical studies with Cannabis. The present article addresses considerations, questions, and issues that affect the conduct of these clinical studies and recommends mandatory documents and some suggested guidelines for use by both PIs and IECs to take studies with Cannabis forward until such time that an interdisciplinary regulatory framework is firmed up by regulatory authority.

18.
Foods ; 12(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37627992

RESUMEN

Elephant apple (Dillenia indica L.) grows wild in Southeast Asia's forests, including in China, India, Nepal, Bangladesh, and Sri Lanka. Elephant apples are considered essential fruit crops because of their high nutritional value, which includes high levels of vitamin C, carbohydrates, fats, fibre, protein, minerals, and fatty acids. It is important to understand the nutritional value and health benefits of elephant apples in order to increase fruit intake in people's daily diets. The present review paper focuses on elephant apple's phytochemistry, bioactive compounds, therapeutic value, and medicinal capabilities for designing and developing a wide range of food formulations. Proteins, minerals, fats, crude fibre, carbohydrates, vitamin C, tannins, malic acid, and glucose are abundant in the leaves, bark, and fruit of the elephant apple. In addition to nutritional components, many phytochemicals found in elephant apples have been identified as bioactive compounds with a broad range of biological activities, the most prominent of which are antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. Overall, elephant apple is a rich, natural source of bioactive compounds with potential applications in the production of value-added foods and nutraceuticals for disease prevention and management.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37261693

RESUMEN

The paper presents the performance evaluation of a modified indirect solar dual collector dryer (MIS2CD) integrated with a thermal storage system for drying myrobalan slices. The design of the solar collector and solar collector with thermal storage was to supply uninterrupted thermal energy to the drying chamber during sunny and sunset hours. To evaluate the dryer performances, one lot (20 kg) of myrobalan was dried in the MIS2CD, and as a result, the thermal efficiency and energy supply period of MIS2CD increased by 12 ± 02% and 41 ± 1.2%, respectively. Drying characteristics of myrobalan slices in MIS2CD, TD, and OSD were studied and compared. A two-term exponential model best explains the drying kinetics of myrobalan slices dried in MIS2CD. The dried sample in MIS2CD results in lesser ΔE* values than TD and OSD methods. The highest exergy efficiency of 78.2% and lower exergy losses were recorded. The energy payback period of the MIS2CD was evaluated as 1.42 years. The CO2 emitted and CO2 reduced reduction are calculated for drying myrobalan in MIS2CD for a lifetime (20 years) of 67.85 kg and 20.65 tons, respectively. The capital cost of the solar dryer design was estimated depending on the economic considerations of the state. The drying hours were increased in MIS2CD against OSD by 59% on the annual sunny days (210 days). The sample drying period MSD and TD to reach the final moisture level of 7% was 9 h and 5 h, respectively. The total economic benefit is 22,622 INR (annually), and the 2.08 benefit-cost ratio for myrobalan dried in MIS2CD compared to TD. The MIS2CD's payback period is nearly 2.18 years, much less than the dryer's lifetime.

20.
Dalton Trans ; 52(23): 7926-7935, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37219089

RESUMEN

A series of differently substituted 2-(2-hydroxyphenyl) benzimidazoles were synthesized by a coupling reaction involving aryl dibromides and 2-hydroxyphenyl benzimidazole. These ligands react with BF3·Et2O to yield the corresponding boron complexes. The photophysical properties of the ligands (L1-L6) and the boron complexes (1-6) were studied in the solution state. Among these, the ligands L1-L4 and L6 displayed aggregation-induced emission (AIE) behavior upon the addition of water in THF resulting in a sizable enhancement of fluorescence intensity. Additionally, compound 5 was found to detect picric acid with a detection limit of 8.33 × 10-7 M.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...