Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Discov Nano ; 19(1): 109, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954158

RESUMEN

Light-emitting diodes (LEDs) are an indispensable part of our daily life. After being studied for a few decades, this field still has some room for improvement. In this regard, perovskite materials may take the leading role. In recent years, LEDs have become a most explored topic, owing to their various applications in photodetectors, solar cells, lasers, and so on. Noticeably, they exhibit significant characteristics in developing LEDs. The luminous efficiency of LEDs can be significantly enhanced by the combination of a poor illumination LED with low-dimensional perovskite. In 2014, the first perovskite-based LED was illuminated at room temperature. Furthermore, two-dimensional (2D) perovskites have enriched this field because of their optical and electronic properties and comparatively high stability in ambient conditions. Recent and relevant advancements in LEDs using low-dimensional perovskites including zero-dimensional to three-dimensional materials is reported. The major focus of this article is based on the 2D perovskites and their heterostructures (i.e., a combination of 2D perovskites with transition metal dichalcogenides, graphene, and hexagonal boron nitride). In comparison to 2D perovskites, heterostructures exhibit more potential for application in LEDs. State-of-the-art perovskite-based LEDs, current challenges, and prospects are also discussed.

2.
J Phys Chem Lett ; 15(21): 5586-5593, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38754086

RESUMEN

Herein, MoS2 quantum dots (QDs) with controlled optical, structural, and electronic properties are synthesized using the femtosecond pulsed laser ablation in liquid (fs-PLAL) technique by varying the pulse width, ablation power, and ablation time to harness the potential for next-generation optoelectronics and quantum technology. Furthermore, this work elucidates key aspects of the mechanisms underlying the near-UV and blue emissions the accompanying large Stokes shift, and the consequent change in sample color with laser exposure parameters pertaining to MoS2 QDs. Through spectroscopic analysis, including UV-visible absorption, photoluminescence, and Raman spectroscopy, we successfully unraveled the mechanisms for the change in optoelectronic properties of MoS2 QDs with laser parameters. We realize that the occurrence of a secondary phase, specifically MoO3-x, is responsible for the significant Stokes shift and blue emission observed in this QD system. The primary factor influencing these activities is the electron transfer observed between these two phases, as validated by excitation-dependent photoluminescence and XPS and Raman spectroscopies.

3.
Nanoscale ; 15(29): 12358-12365, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37449882

RESUMEN

Mono-layer transition metal dichalcogenides (TMDCs) have emerged as an ideal platform for the study of many-body physics. As a result of their low dimensionality, these materials show a strong Coulomb interaction primarily due to reduced dielectric screening that leads to the formation of stable excitons (bound electron-hole pairs) and higher order excitons, including trions, and bi-excitons even at room temperature. van der Waals (vdW) heterostructures (HSs) of TMDCs provide an additional degree of freedom for altering the properties of 2D materials because charge carriers (electrons) in the different atomically thin layers are exposed to interlayer coupling and charge transfer takes place between the layers of vdW HSs. Astoundingly, it leads to the formation of different types of quasi-particles. In the present work, we report the synthesis of vdW HSs, i.e., α-MoO3/MoS2, on a 300 nm SiO2/Si substrate and investigate their temperature-dependent photoluminescence (PL) spectra. Interestingly, an additional PL peak is observed in the case of the HS, along with A and B excitonic peaks. The emergence of a new PL peak in the low-energy regime has been assigned to the formation of a positive trion. The formation of positive trions in the HS is due to the high work function of α-MoO3, which enables the spontaneous transit of electrons from MoS2 to α-MoO3 and injection of holes into the MoS2 layer. In order to confirm charge transfer in the α-MoO3/MoS2 HS, systematic power and wavelength-dependent Raman and PL studies, as well as first-principle calculations using Bader charge analysis, have been carried out, which clearly validate our mechanism. We believe that this study will provide a platform towards the integration of vdW HSs for next-generation excitonic devices.

4.
RSC Adv ; 13(24): 16241-16247, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37266495

RESUMEN

In this communication, we demonstrate uniaxial strain relaxation in monolayer (1L) MoS2 transpires through cracks in both single and double-grain flakes. Chemical vapour deposition (CVD) grown 1L MoS2 has been transferred onto polyethylene terephthalate (PET) and poly(dimethylsiloxane) (PDMS) substrates for low (∼1%) and high (1-6%) strain measurements. Both Raman and photoluminescence (PL) spectroscopy revealed strain relaxation via cracks in the strain regime of 4-6%. In situ optical micrographs show the formation of large micron-scale cracks along the strain axis and ex situ atomic force microscopy (AFM) images reveal the formation of smaller lateral cracks due to the strain relaxation. Finite element simulation has been employed to estimate the applied strain efficiency as well as to simulate the strain distribution for MoS2 flakes. The present study reveals the uniaxial strain relaxation mechanism in 1L MoS2 and paves the way for exploring strain relaxation in other transition metal dichalcogenides (TMDCs) as well as their heterostructures.

5.
Chemphyschem ; 24(7): e202200598, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36510477

RESUMEN

The osmotic energy from a salinity gradient (i. e. blue energy) is identified as a promising non-intermittent renewable energy source for a sustainable technology. However, this membrane-based technology is facing major limitations for large-scale viability, primarily due to the poor membrane performance. An atomically thin 2D nanoporous material with high surface charge density resolves the bottleneck and leads to a new class of membrane material the salinity gradient energy. Although 2D nanoporous membranes show extremely high performance in terms of energy generation through the single pore, the fabrication and technical challenges such as ion concentration polarization make the nanoporous membrane a non-viable solution. On the other hand, the mesoporous and micro porous structures in the 2D membrane result in improved energy generation with very low fabrication complexity. In the present work, we report femtosecond (fs) laser-assisted scalable fabrication of µm to mm size pores on Graphene membrane for blue energy generation for the first time. A remarkable osmotic power in the order of µW has been achieved using mm size pores, which is about six orders of magnitudes higher compared to nanoporous membranes, which is mainly due to the diffusion-osmosis driven large ionic flux. Our work paves the way towards fs laser-assisted scalable pore creation in the 2D membrane for large-scale osmotic power generation.

6.
ACS Nano ; 16(12): 21366-21376, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36468945

RESUMEN

Synthesizing a material with the desired polymorphic phase in a chemical vapor deposition (CVD) process requires a delicate balance among various thermodynamic variables. Here, we present a methodology to synthesize rhombohedral (3R)-phase MoS2 in a well-defined sword-like geometry having lengths up to 120 µm, uniform width of 2-3 µm and thickness of 3-7 nm by controlling the carrier gas flow dynamics from continuous mode to pulsed mode during the CVD growth process. Characteristic signatures such as high degree of circular dichroism (∼58% at 100 K), distinct evolution of low-frequency Raman peaks and increasing intensity of second harmonic signals with increasing number of layers conclusively establish the 3R-phase of the material. A high value (∼844 pm/V) of second-order susceptibility for few-layer-thick MoS2 swords signifies the potential of MoS2 to serve as an atomically thin nonlinear medium. A field effect mobility of 40 cm2/V-s and Ion/Ioff ratio of ∼106 further confirm the electronic-grade standard of this 3R-phase MoS2. These findings are significant for the development of emerging quantum electronic devices utilizing valley-based physics and nonlinear optical phenomena in layered materials.

7.
Nanoscale Adv ; 4(23): 5123-5131, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504743

RESUMEN

Negative differential resistance (NDR) is one of the nonlinear transport phenomena in which ionic current decreases with the increase in electromotive potential. Electro-osmosis, diffusio-osmosis, and surface charge density of pores are the driving forces for observing NDR in nanoscale ion transport. Here, we report electrodiffusioosmosis induced NDR using micro to millimeter size pores in a two-dimensional (2D) graphene-coated copper (Gr/Cu) membrane. Along with NDR, we also observed ion current rectification (ICR), in which there is preferential one-directional ion flow for equal and opposite potentials. The experimentally observed NDR effect has been validated by performing ion transport simulations using Poisson-Nernst-Planck (PNP) equations and Navier-Stokes equations with the help of COMSOL Multiphysics considering salinity gradient across the membrane. Charge polarization induced electro-osmotic flow (EOF) dominates over diffusio-osmosis, causing the backflow of low concentration/conductivity solution into the pore, thereby causing NDR. This finding paves the way toward potential applications in ionic tunnel diodes as rectifiers, switches, amplifiers, and biosensors.

8.
Rev Sci Instrum ; 93(6): 064104, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778037

RESUMEN

The ion transport measurements using various ion-exchange membranes (IEMs) face several challenges, including controllability, reproducibility, reliability, and accuracy. This is due to the manual filling of the solutions in two different reservoirs in a typical diffusion cell experiment with a random flow rate, which results in the diffusion through the IEM even before turning on the data acquisition system as reported so far. Here, we report the design and development of an automated experimental setup for ion transport measurements using IEMs. The experimental setup has been calibrated and validated by performing ion transport measurements using a standard nanoporous polycarbonate membrane. We hope that the present work will provide a standard tool for realizing reliable ion transport measurements using ion-exchange membranes and can be extended to study other membranes of various pore densities, shapes, and sizes.


Asunto(s)
Membranas Artificiales , Difusión , Intercambio Iónico , Transporte Iónico , Reproducibilidad de los Resultados
9.
Nanoscale ; 14(14): 5289-5313, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322836

RESUMEN

Light plays an essential role in our world, with several technologies relying on it. Photons will also play an important role in the emerging quantum technologies, which are primed to have a transformative effect on our society. The development of single-photon sources and ultra-sensitive photon detectors is crucial. Solid-state emitters are being heavily pursued for developing truly single-photon sources for scalable technology. On the detectors' side, the main challenge lies in inventing sensitive detectors operating at sub-optical frequencies. This review highlights the promising research being conducted for the development of quantum emitters and detectors based on two-dimensional van der Waals (2D-vdW) materials. Several 2D-vdW materials, from canonical graphene to transition metal dichalcogenides and their heterostructures, have generated a lot of excitement due to their tunable emission and detection properties. The recent developments in the creation, fabrication and control of quantum emitters hosted by 2D-vdW materials and their potential applications in integrated photonic devices are discussed. Furthermore, the progress in enhancing the photon-counting potential of 2D material-based detectors, viz. 2D photodetectors, bolometers and superconducting single-photon detectors functioning at various wavelengths is also reported.

10.
ACS Omega ; 7(7): 6412-6418, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35224402

RESUMEN

Monolayer (ML) transition metal dichalcogenides (TMDCs) have been rigorously studied to comprehend their rich spin and valley physics, exceptional optical properties, and ability to open new avenues in fundamental research and technology. However, intricate analysis of twisted homobilayer (t-BL) systems is highly required due to the intriguing twist angle (t-angle)-dependent interlayer effects on optical and electrical properties. Here, we report the evolution of the interlayer effect on artificially stacked BL WSe2, grown using chemical vapor deposition (CVD), with t-angle in the range of 0 ≤ θ ≤ 60°. Systematic analyses based on Raman and photoluminescence (PL) spectroscopies suggest intriguing deviations in the interlayer interactions, higher-energy exciton transitions (in the range of ∼1.6-1.7 eV), and stacking. In contrast to previous observations, we demonstrate a red shift in the PL spectra with t-angle. Density functional theory (DFT) is employed to understand the band-gap variations with t-angle. Exciton radiative lifetime has been estimated theoretically using temperature-dependent PL measurements, which shows an increase with t-angle that agrees with our experimental observations. This study presents the groundwork for further investigation of the evolution of various interlayer excitons and their dynamics with t-angle in homobilayer systems, critical for optoelectronic applications.

11.
Nanoscale Res Lett ; 16(1): 22, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33537903

RESUMEN

Discovery of two-dimensional (2D) topological insulators (TIs) demonstrates tremendous potential in the field of thermoelectric since the last decade. Here, we have synthesized 2D TI, Sb2Te3 of various thicknesses in the range 65-400 nm using mechanical exfoliation and studied temperature coefficient in the range 100-300 K using micro-Raman spectroscopy. The temperature dependence of the peak position and line width of phonon modes have been analyzed to determine the temperature coefficient, which is found to be in the order of 10-2 cm-1/K, and it decreases with a decrease in Sb2Te3 thickness. Such low-temperature coefficient would favor to achieve a high figure of merit (ZT) and pave the way to use this material as an excellent candidate for thermoelectric materials. We have estimated the thermal conductivity of Sb2Te3 flake with the thickness of 115 nm supported on 300-nm SiO2/Si substrate which is found to be ~ 10 W/m-K. The slightly higher thermal conductivity value suggests that the supporting substrate significantly affects the heat dissipation of the Sb2Te3 flake.

13.
Nature ; 567(7746): 81-86, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842637

RESUMEN

Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moiré superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moiré superlattice can lead to the observation of electronic minibands5-7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor-insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moiré superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moiré pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9.

14.
Nanoscale Res Lett ; 14(1): 107, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30903401

RESUMEN

Synthesis of high-quality graphene layers on insulating substrates is highly desirable for future graphene-based high-speed electronics. Besides the use of gaseous hydrocarbon sources, solid and liquid hydrocarbon sources have recently shown great promises for high-quality graphene growth. Here, I report chemical vapor deposition growth of mono- to few-layer graphene directly on SiO2 substrate using ethanol as liquid hydrocarbon feedstock. The growth process of graphene has been systematically investigated as a function of annealing temperature as well as different seed layers. Interestingly, it was found that the carbon atoms produced by thermal decomposition of ethanol form sp2 carbon network on SiO2 surface thereby forming nanographene flakes via an intermediate carbon-based nanostructured state carbon nanotube. This work might pave the way to an understanding for economical and catalyst-free graphene growth compatible with current silicon-processing techniques, and it can be applied on a variety of insulating surfaces including quartz, sapphire, and fused silica.

15.
Nanoscale Adv ; 1(3): 1215-1223, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36133212

RESUMEN

In the race to find novel transparent conductors for next-generation optoelectronic devices, graphene is supposed to be one of the leading candidates, as it has the potential to satisfy all future requirements. However, the use of graphene as a truly transparent conductor remains a great challenge because its lowest sheet resistance demonstrated so far exceeds that of the commercially available indium tin oxide. The possible cause of low conductivity lies in its intrinsic growth process, which requires further exploration. In this work, I have approached this problem by controlling graphene nucleation during the chemical vapor deposition process as well as by adopting three distinct procedures, including bis(trifluoromethanesulfonyl)amide doping, post annealing, and flattening of graphene films. Additionally, van der Waals stacked graphene layers have been prepared to reduce the sheet resistance effectively. I have demonstrated an efficient and flexible transparent conductor with the extremely low sheet resistance of 40 Ω sq-1, high transparency (T r ∼90%), and high mechanical flexibility, making it suitable for electrode materials in future optoelectronic devices.

16.
ACS Omega ; 3(10): 14097-14102, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458102

RESUMEN

We demonstrated room temperature near infrared (NIR) region random lasing (RL) (800-950 nm), with a threshold of nearly 500 µW, in ∼200 nm thick MoS2/Au nanoparticles (NPs)/ZnO heterostructures using photoluminescence spectroscopy. The RL in the above system arises mainly due to the following three reasons: (1) enhanced multiple scattering because of Au/ZnO disordered structure, (2) exciton-plasmon coupling because of Au NPs, and (3) enhanced charge transfer from ZnO to thick MoS2 flakes. RL has recently attracted tremendous interest because of its wide applications in the field of telecommunication, spectroscopy, and specifically in biomedical tissue imaging. This work provides new dimensions toward realization of low power on-chip NIR random lasers made up of biocompatible materials.

18.
Nano Lett ; 17(9): 5342-5349, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28753319

RESUMEN

Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

19.
ACS Nano ; 11(4): 4041-4050, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28363013

RESUMEN

Interlayer excitons were observed at the heterojunctions in van der Waals heterostructures (vdW HSs). However, it is not known how the excitonic phenomena are affected by the stacking order. Here, we report twist-angle-dependent interlayer excitons in MoSe2/WSe2 vdW HSs based on photoluminescence (PL) and vdW-corrected density functional theory calculations. The PL intensity of the interlayer excitons depends primarily on the twist angle: It is enhanced at coherently stacked angles of 0° and 60° (owing to strong interlayer coupling) but disappears at incoherent intermediate angles. The calculations confirm twist-angle-dependent interlayer coupling: The states at the edges of the valence band exhibit a long tail that stretches over the other layer for coherently stacked angles; however, the states are largely confined in the respective layers for intermediate angles. This interlayer hybridization of the band edge states also correlates with the interlayer separation between MoSe2 and WSe2 layers. Furthermore, the interlayer coupling becomes insignificant, irrespective of twist angles, by the incorporation of a hexagonal boron nitride monolayer between MoSe2 and WSe2.

20.
ACS Nano ; 10(9): 8973-9, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27563804

RESUMEN

Transition metal dichalcogenides (TMDs) have recently received increasing attention because of their potential applications in semiconducting and optoelectronic devices exhibiting large optical absorptions in the visible range. However, some studies have reported that the grain boundaries of TMDs can be easily degraded by the presence of oxygen in water and by UV irradiation, ozone, and heating under ambient conditions. We herein demonstrate the photodegradation of WSe2 and MoSe2 by laser exposure (532 nm) and the subsequent prevention of this photodegradation by encapsulation with hexagonal boron nitride (h-BN) layers. The photodegradation was monitored by variation in peak intensities in the Raman and photoluminescence spectra. The rapid photodegradation of WSe2 under air occurred at a laser power of ≥0.5 mW and was not observed to any extent at ≤0.1 mW. However, in the presence of a water droplet, the photodegradation of WSe2 was accelerated and took place even at 0.1 mW. We examined the encapsulation of WSe2 with h-BN and found that this prevented photodegradation. However, a single layer of h-BN was not sufficient to fully prevent this photodegradation, and so a triple layer of h-BN was employed. We also demonstrated that the photodegradation of MoSe2 was prevented by encapsulation with h-BN layers. On the basis of X-ray photoelectron spectroscopy and scanning photoemission microscopy data, we determined that this degradation was caused by the photoinduced oxidation of TMDs. These results can be used to develop a general strategy for improving the stability of 2D materials in practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...