Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Taibah Univ Med Sci ; 18(4): 676-686, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36852242

RESUMEN

Objective: Sulci and gyri of the cerebrum can be easily identified with the aid of radiology but are difficult to locate during surgical operations, owing to anatomical variations and the surgical approach of the sulci through a small aperture. Therefore, this study was performed to locate the main sulci of the brain by using various anatomical landmarks in cadaveric brain specimens and CT scan images. Methods: In 31 cadaveric brain specimens (17 right and 14 left hemispheres) from people of unknown sex, 21 parameters associated with important sulci of the brain were studied. CT scan images for 150 patients in three age groups were examined. The patient IDs were categorized into 50 patients in each of the following age groups: 20-40 yr, 41-60 yr and 61-80 yr. Ten parameters were studied. The data were statistically analyzed in SPSS software. Results: In the cadaveric brain specimens, comparisons of right and left hemispheres indicated that only the posterior part of the calcarine sulcus showed a significant difference (p = 0.0394). In CT scans within each age group, comparison of the right and left sides in males and females showed significant differences for many parameters (e.g., calcarine sulcus to occipital pole: right p = 0.0025; left p = 0.0009). Comparisons between male and female parameters also showed significant differences. Conclusion: This study aids in identifying the important functional areas of the brain situated near the sulci, given that the sulci are connected to the gyral functions and act as a barrier for the gyri. The findings may facilitate neurosurgery operations.

2.
Colloids Surf B Biointerfaces ; 166: 127-134, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29558703

RESUMEN

Researchers have explored the ability of chitosan to form nanoparticles, to suit varying applications, ranging from wound-healing to gene delivery. Ionic gelation is a widely used method for formulating chitosan nanoparticles, where self-assembly plays a crucial role. This self-assembly is initially promoted by hydrophilic-hydrophobic parity amongst individual chitosan residues, along with electrostatic and Van der Waals interactions with the cross-linker. However, until now the intrinsic ability of chitosan to self-assemble is not widely studied; hence, we investigate the self-assembly of chitosan, based on proton balance between its protonated and deprotonated residues, to promote facile nanoparticle synthesis. This is one of the first reports that highlights subtle but critical influence of proton balance in the chitosan polymer on the formation of chitosan nanoparticles.


Asunto(s)
Quitosano/química , Nanopartículas/química , Protones , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...