Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(28): 30636-30644, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035979

RESUMEN

The use of chemical dispersants to remove oil spills in aquatic environments raises serious concerns, including heightened toxicity and limited biodegradability, which diminish their effectiveness. This study aimed to develop an environmentally friendly formulation by combining two nonionic surfactants (Tween 80, Span 80) with two surface-active ionic liquids (SAILs): 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and choline myristate [Cho][Mys], to remediate crude oil spill. The performance of the formulation was evaluated by its emulsion stability, surface tension, interfacial tension (IFT), and effectiveness. The toxicity and biodegradability of the formulation were also assessed to ensure their safe application in aquatic environments. The formulation (F9) exhibited the most stable emulsion, maintaining stability even after 5 h with a critical micelle concentration (CMC) of 3.52 mM. The efficiency of the formulation in dispersing various crude oils (Arab, Ratawi, and Doba) ranged from 70.12 to 93.72%. Acute toxicity tests conducted on zebrafish demonstrated that the formulation, with an LC50 value of 450 mg L-1, exhibited practically nontoxicity after 96 h. The formulation showed rapid biodegradability, exceeding 60% within a 28-day testing period. This research presents a promising approach for synthesizing the green formulation which can contribute to mitigating the environmental impacts of oil spills and enhancing the efficiency of cleanup operations.

2.
Mar Pollut Bull ; 202: 116311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574502

RESUMEN

The synthesis of new surfactants helps to mitigate the environmental and financial effects of oil spills by providing efficient cleanup options. Herein, this study provides the development of a binary mixture of Span 80 and Choline myristate [Cho][Mys], a surface-active ionic liquid (SAIL) as green dispersant for oil spill remediation. The synergistic interaction at a 60:40 (w/w) ratio significantly lowered the critical micelle concentration (cmc) to 0.029 mM. Dispersion efficiency tests with Arab crude oil showed optimal performance at a 60:40 ratio of Span 80 and [Cho][Mys] (1:25 dispersant to oil ratio, v/v), achieving 81.16 % dispersion effectiveness in the baffled flask test. The binary mixture demonstrated superior emulsion stability (6 h) and the lowest interfacial tension (1.12 mN/m). Acute toxicity experiments revealed the dispersant's practical non-toxicity with an LC50 value of 600 mg/L. Overall, this environmentally benign surfactant combination shows promise as a safe and effective oil spill dispersant.


Asunto(s)
Restauración y Remediación Ambiental , Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Tensoactivos , Contaminantes Químicos del Agua , Líquidos Iónicos/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Hexosas
3.
Chemosphere ; 344: 140412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827466

RESUMEN

Chemical dispersants are extensively used for marine oil spill remediation. However, the increased toxicity and low biodegradability of these dispersants restrict their employment in the marine environment. Hence, in this work, we have developed an eco-friendly formulation composed of an ionic liquid,1-butyl-3-methylimidazolium lauroyl sarcosinate [BMIM][Lausar] and sorbitan monooleate (Span) 80. Micellar and interfacial parameters, dispersion effectiveness, as well as the toxicity and biodegradability of the developed formulation were investigated. Micellar properties confirmed a high degree of synergism among the surfactant molecules and the formation of stable micelle. The dispersion effectiveness, at dispersant-to-oil ratio (DOR) of 1:25 (v/v), against three crude oils (Arab, Ratawi, and Doba) was assessed. We achieved a dispersion effectiveness of 68.49%, 74.05%, and 83.43% for Ratawi, Doba, and Arab crude oil, respectively, using a 70:30 (w/w) ratio of Span 80 to [BMIM][Lausar]. Furthermore, the results obtained from optical microscopy and particle size analysis (PSA) indicated that the oil droplet size decreased with higher DOR. Additionally, acute toxicity experiments were conducted on zebrafish (Danio rerio) using the developed formulation, confirming its non-toxic behavior, with LC50 values of 800 mg/L after 96 h. The formulation also exhibited high biodegradability, with only 25.01% of the original quantity remaining after 28 days. Hence, these results suggest that the new formulation has the potential to be a highly effective and environmentally friendly dispersant for oil spill remediation.


Asunto(s)
Líquidos Iónicos , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Líquidos Iónicos/toxicidad , Contaminación por Petróleo/análisis , Pez Cebra , Tensoactivos/química , Petróleo/toxicidad , Petróleo/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
4.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570764

RESUMEN

Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.


Asunto(s)
Citrus sinensis , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Tensoactivos/toxicidad , Tensoactivos/metabolismo , Contaminación por Petróleo/análisis , Citrus sinensis/metabolismo , Pez Cebra/metabolismo , Contaminantes Químicos del Agua/análisis
5.
ACS Omega ; 7(18): 15751-15759, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35571843

RESUMEN

Chemical dispersants are used extensively for oil spill remediation. Most of these dispersants are composed of a mixture of surfactants and organic solvents, which raises concerns about aquatic toxicity and environmental impact. In this study, the toxicity and biodegradability of an oil spill dispersant composed of the surface-active ionic liquid 1-butyl-3-methylimidazolium lauroyl sarcosinate [Bmim][Lausar] and Tween-80 were investigated. In addition, important environmental factors including salinity, temperature, and wave-mixing energy were optimized to obtain maximum dispersion effectiveness. The acute toxicity against zebrafish (Danio rerio) showed that the developed dispersant was practically non-toxic with a median lethal dose of more than 100 mg L-1 after 96 h. The dispersant also demonstrated outstanding biodegradability of 66% after 28 days. A model was developed using a response surface methodology that efficiently (R 2 = 0.992) related the salinity, temperature, and wave-mixing energy of seawater to dispersion effectiveness. The system was then optimized, and a high dispersion effectiveness of 89.70% was obtained with an experimental error of less than 2%. Our findings suggest that the surface-active ionic liquid and Tween-80 mixture could be a viable alternative to toxic chemical dispersants for oil spill remediation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...