Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Biochimie ; 93(9): 1576-83, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21664227

RESUMEN

Inorganic pyrophosphatase (PPase) is a conserved and essential enzyme catalyzing the hydrolysis of pyrophosphate PP(i). Its activity is required to promote a lot of thermodynamically unfavorable reactions including biosynthesis of activated precursors of sugars and amino acids. Several protein partners of PPase were found so far in Escherichia coli by large-scale approaches. Functional role of these interactions was not studied. In this paper we report the identification of three protein partners of E. coli PPase not found earlier. Pull-down assay on the Ni(2+)-chelating column using 6His-tagged PPase as bait was used to isolate PPase complexes from stationary-phase cells. Of several isolated protein components, five were identified by MALDI-TOF mass-spectrometry: two chaperones (DnaK and GroEL) and three enzymes of carbohydrate and amino acid metabolism (FbaB, fructose-1,6-bisphosphate aldolase, class I; GadA, l-glutamate decarboxylase; and KduI, 5-keto-4-deoxyuronate isomerase). These three proteins were cloned, expressed and purified in 6His-tagged and/or tag-free forms. Their binary interactions with PPase were verified by independent approaches. Initial characterization of the complexes indicates that PPase may stabilize its protein partners against unfolding or degradation. Comparative analysis of the PPase protein partners allowed an insight into its possible involvement in the cell metabolic regulation.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Pirofosfatasa Inorgánica/química , Hidrólisis , Complejos Multiproteicos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Biochemistry (Mosc) ; 74(7): 734-42, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19747093

RESUMEN

In this paper, kinetic properties of a soluble inorganic pyrophosphatase of family I from Vibrio cholerae (V-PPase), intestinal pathogen and causative agent of human cholera, are characterized in detail, and the crystal structure of a metal-free enzyme is reported. Hydrolytic activity of V-PPase has been studied as a function of pH, concentration of metal cofactors (Mg2+ or Mn2+), and ionic strength. It has been found that, despite the high conservation of amino acid sequences for the known bacterial PPases of family I, V-PPase differs from the other enzymes of the same family in a number of parameters. Dissociation constants of V-PPase complexed with Mg2+ or Mn2+ were essentially the same as for Escherichia coli PPase (E-PPase). However, the pH optimum of MgPP(i) hydrolysis by V-PPase was shifted to more alkaline pH due to higher values of the pK(a) of ionizable groups for both the free enzyme and the enzyme-substrate complex. The stability of a hexameric form of V-PPase has been studied as a function of pH. The corresponding pK(a) of a group that controls the stability of the hexamer at pH below 6 (pK(a) = 4.4) was significantly lower than in the other hexameric PPases. The crystal structure reported here is analyzed and compared with the structure of E-PPase. The location of amino acid residues that differ in V-PPase and E-PPase is discussed. Since V-PPase has been found to retain its hydrolytic activity in high ionic strength media, the observed structural and kinetic features are analyzed in view of the possible osmoadaptation of this protein.


Asunto(s)
Proteínas Bacterianas/química , Pirofosfatasa Inorgánica/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Estabilidad de Enzimas , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/aislamiento & purificación , Pirofosfatasa Inorgánica/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Vibrio cholerae/química , Vibrio cholerae/genética
5.
Biochemistry (Mosc) ; 73(8): 897-905, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18774936

RESUMEN

Inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) is one of the possible targets for the rational design of anti-tuberculosis agents. In this paper, functional properties of this enzyme are characterized in the presence of the most effective activators--Mg2+ and Mn2+. Dissociation constants of Mt-PPase complexed with Mg2+ or Mn2+ are essentially similar to those of Escherichia coli PPase. Stability of a hexameric form of Mt-PPase has been characterized as a function of pH both for the metal-free enzyme and for Mg2+- or Mn2+-enzyme. Hexameric metal-free Mt-PPase has been shown to dissociate, forming monomers at pH below 4 or trimers at pH from 8 to 10. Mg2+ or Mn2+ shift the hexamer-trimer equilibrium found for the apo-Mt-PPase at pH 8-10 toward the hexameric form by stabilizing intertrimeric contacts. The pK(a) values have been determined for groups that control the observed hexamer-monomer (pK(a) 5.4), hexamer-trimer (pK(a) 7.5), and trimer-monomer (pK(a) 9.8) transitions. Our results demonstrate that due to the non-conservative amino acid residues His21 and His86 in the active site of Mt-PPase, substrate specificity of this enzyme, in contrast to other typical PPases, does not depend on the nature of the metal cofactor.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Metales/metabolismo , Mycobacterium tuberculosis/enzimología , Antituberculosos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Humanos , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
6.
Biochemistry (Mosc) ; 72(1): 93-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17309442

RESUMEN

The interaction of Escherichia coli inorganic pyrophosphatase (E-PPase) with effector ATP has been studied. The E-PPase has been chemically modified with the dialdehyde derivative of ATP. It has been established that in the experiment only one molecule of effector ATP is bound to each subunit of the hexameric enzyme. Tryptic digestion of the adenylated protein followed by isolation of a modified peptide by HPLC and its mass-spectrometric identification has showed that it is an amino group of Lys146 that undergoes modification. Molecular docking of ATP to E-PPase indicates that the binding site for effector ATP is located in a cluster of positively charged amino acid residues proposed earlier on the basis of site-directed mutagenesis to participate in binding of effector pyrophosphate. Molecular docking also reveals several other amino acid residues probably involved in the interaction with effectors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Difosfatos/metabolismo , Escherichia coli/enzimología , Pirofosfatasa Inorgánica/metabolismo , Compuestos de Magnesio/metabolismo , Adenosina Trifosfato/química , Sitios de Unión , Relación Dosis-Respuesta a Droga , Pirofosfatasa Inorgánica/química , Modelos Moleculares , Estructura Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad
7.
Biochemistry (Mosc) ; 72(1): 100-8, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17309443

RESUMEN

It has been shown that PP(i), methylenediphosphonate, and ATP act as effectors of Escherichia coli inorganic pyrophosphatase (E-PPase), and that they compete for binding at the allosteric regulatory site. On the basis of chemical modification and computer modeling of a structure of the enzyme-ATP complex, a number of amino acid residues presumably involved in binding effectors has been revealed. Mutant variants Lys112Gln, Lys112Gln/Lys148Gln, and Lys112Gln/Lys115Ala of E-PPase have been obtained, as well as a modified variant of wild type E-PPase ((Ad)wt PPase) with a derivative of ATP chemically attached to the amino group of Lys146. Kinetic properties of these variants have been investigated and compared to the earlier described variants Lys115Ala, Arg43Gln, and Lys148Gln. Analysis of the data confirms the proposed location of an effector binding site in a cluster of positively charged amino acid residues including the side chains of Arg43, Lys146 (subunit A), Lys112, and Lys115 (subunit B). Lys112 is supposed to play a key role in forming contacts with the phosphate groups of the three studied effectors.


Asunto(s)
Adenosina Trifosfato/química , Escherichia coli/enzimología , Pirofosfatasa Inorgánica/metabolismo , Lisina/química , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Hidrólisis , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Modelos Moleculares , Estructura Molecular , Mutación , Unión Proteica , Relación Estructura-Actividad
8.
J Mol Biol ; 366(4): 1305-17, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17196979

RESUMEN

Here, we describe high-resolution X-ray structures of Escherichia coli inorganic pyrophosphatase (E-PPase) complexed with the substrate, magnesium, or manganese pyrophosphate. The structures correspond to steps in the catalytic synthesis of enzyme-bound pyrophosphate (PP(i)) in the presence of fluoride as an inhibitor of hydrolysis. The catalytic reaction intermediates were trapped applying a new method that we developed for initiating hydrolytic activity in the E-PPase crystal. X-ray structures were obtained for three consecutive states of the enzyme in the course of hydrolysis. Comparative analysis of these structures showed that the Mn2+-supported hydrolysis of the phosphoanhydride bond is followed by a fast release of the leaving phosphate from the P1 site. The electrophilic phosphate P2 is trapped in the "down" conformation. Its movement into the "up" position most likely represents the rate-limiting step of Mn2+-supported hydrolysis. We further determined the crystal structure of the Arg43Gln mutant variant of E-PPase complexed with one phosphate and four Mn ions.


Asunto(s)
Catálisis , Escherichia coli/enzimología , Fluoruros/farmacología , Pirofosfatasa Inorgánica/química , Difracción de Rayos X/métodos , Sitios de Unión , Difosfatos/química , Difosfatos/farmacología , Activación Enzimática , Fluoruros/química , Concentración de Iones de Hidrógeno , Hidrólisis , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Magnesio/química , Magnesio/farmacología , Manganeso/química , Manganeso/farmacología , Modelos Moleculares , Mutación , Isoformas de Proteínas , Especificidad por Sustrato
9.
Biochemistry (Mosc) ; 70(8): 858-66, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16212541

RESUMEN

Escherichia coli inorganic pyrophosphatase (PPase) is a one-domain globular enzyme characterized by its ability to easily undergo minor structure rearrangements involving flexible segments of the polypeptide chain. To elucidate a possible role of these segments in catalysis, catalytic properties of mutant variants of E. coli PPase Gly100Ala and Gly147Val with substitutions in the conservative loops II and III have been studied. The main result of the mutations was a sharp decrease in the rates of conformational changes required for binding of activating Mg2+ ions, whereas affinity of the enzyme for Mg2+ was not affected. The pH-independent parameters of MgPP(i) hydrolysis, kcat and kcat/Km, have been determined for the mutant PPases. The values of kcat for Gly100Ala and Gly147Val variants were 4 and 25%, respectively, of the value for the native enzyme. Parameter kcat/Km for both mutants was two orders of magnitude lower. Mutation Gly147Val increased pH-independent Km value about tenfold. The study of synthesis of pyrophosphate in the active sites of the mutant PPases has shown that the maximal level of synthesized pyrophosphate was in the case of Gly100Ala twofold, and in the case of Gly147Val fivefold, higher than for the native enzyme. The results reported in this paper demonstrate that the flexibility of the loops where the residues Gly100 and Gly147 are located is necessary at the stages of substrate binding and product release. In the case of Gly100Ala PPase, significant impairment of affinity of enzyme effector site for PP(i) was also found.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteínas de Escherichia coli/genética , Glicina/genética , Pirofosfatasa Inorgánica/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Unión Competitiva , Catálisis , Secuencia Conservada/genética , Difosfatos/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Genotipo , Concentración de Iones de Hidrógeno , Hidrólisis , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/metabolismo , Cinética , Magnesio/metabolismo , Mutación , Conformación Proteica , Especificidad por Sustrato
10.
Biochemistry (Mosc) ; 70(1): 69-78, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15701051

RESUMEN

Soluble inorganic pyrophosphatase from Escherichia coli (E-PPase) is a hexamer forming under acidic conditions the active trimers. We have earlier found that the hydrolysis of a substrate (MgPP(i)) by the trimers as well as a mutant E-PPase Asp26Ala did not obey the Michaelis-Menten equation. To explain this fact, a model has been proposed implying the existence of, aside from an active site, an effector site that can bind PP(i) and thus accelerate MgPP(i) hydrolysis. In this paper, we demonstrate that the noncompetitive activation of MgPP(i) hydrolysis by metal-free PP(i) can also explain kinetic features of hexameric forms of both the native enzyme and the specially obtained mutant E-PPase with a substituted residue Glu145 in a flexible loop 144-149. Aside from PP(i), its non-hydrolyzable analog methylene diphosphonate can also occupy the effector site resulting in the acceleration of the substrate hydrolysis. Our finding that two moles of [32P]PP(i) can bind with each enzyme subunit is direct evidence for the existence of the effector site in the native E-PPase.


Asunto(s)
Difosfatos/metabolismo , Difosfatos/farmacología , Pirofosfatasa Inorgánica/metabolismo , Compuestos de Magnesio/metabolismo , Sitio Alostérico , Difosfonatos/farmacología , Activación Enzimática , Escherichia coli/enzimología , Hidrólisis , Pirofosfatasa Inorgánica/química , Cinética , Modelos Químicos , Complejos Multienzimáticos , Unión Proteica
11.
Biochemistry (Mosc) ; 68(11): 1195-9, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14640961

RESUMEN

A dimeric form can be obtained from native hexameric Escherichia coli inorganic pyrophosphatase (E-PPase) by destroying the hydrophobic intersubunit contacts, and it has been shown earlier to consist of the subunits of different trimers. The present paper is devoted to the kinetic characterization of such a "double-decked" dimer obtained by the dissociation of either the native enzyme or the mutant variant Glu145Gln. The dimeric form of the native inorganic pyrophosphatase was shown to retain high catalytic efficiency that is in sharp contrast to the dimers obtained as a result of the mutations at the intertrimeric interface. The dimeric enzymes described in the present paper, however, have lost the regulatory properties, in contrast to the hexameric and trimeric forms of the enzyme.


Asunto(s)
Escherichia coli/enzimología , Pirofosfatasa Inorgánica/química , Proteínas Recombinantes/química , Sustitución de Aminoácidos , Catálisis , Clonación Molecular , Dimerización , Escherichia coli/química , Escherichia coli/genética , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/aislamiento & purificación , Cinética , Mutagénesis Sitio-Dirigida , Estructura Cuaternaria de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
12.
Eur J Biochem ; 268(13): 3851-7, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11432753

RESUMEN

Excess of Mg2+ ions is known to inhibit the soluble inorganic pyrophosphatases (PPases). In contrast, the mutant Escherichia coli inorganic pyrophosphatase Asp42-->Asn is three times more active than native and retains its activity at high Mg2+ concentration. In this paper, another two mutant variants with Asp42 replaced by Ala or Glu were investigated to characterize the role of Asp42 in catalysis. pH-independent kinetic parameters of MgPPi hydrolysis and the dissociation constants for the activating and inhibitory Mg2+ ions were calculated. It was shown that Mg2+ inhibition of MgPPi hydrolysis by native PPase exhibited uncompetitive kinetics under the saturating substrate concentration. All three substitutions of Asp42 lead to a sharp decrease of inhibitory Mg2+ affinity to the enzyme. These findings allow determination of the sites of inhibitory and substrate Mg2+ ions binding to PPase. Common features of these mutants allow the conclusion that the function of Asp42 is to accurately coordinate the residues implicated in the substrate and the inhibitory Mg2+ ion binding to PPase active site. Structural analysis of PPase complexed with Mg2+ compared with PPase complexed with Mn2+ and reaction products confirms this supposition.


Asunto(s)
Ácido Aspártico , Escherichia coli/enzimología , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica , Cinética , Magnesio/farmacología , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometría
13.
J Mol Biol ; 314(3): 633-45, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11846572

RESUMEN

Two structures of Escherichia coli soluble inorganic pyrophosphatase (EPPase) complexed with calcium pyrophosphate (CaPP(i)-EPPase) and with Ca(2+) (Ca(2+)-EPPase) have been solved at 1.2 and 1.1 A resolution, respectively. In the presence of Mg(2+), this enzyme cleaves pyrophosphate (PP(i)) into two molecules of orthophosphate (P(i)). This work has enabled us to locate PP(i) in the active site of the inorganic pyrophosphatases family in the presence of Ca(2+), which is an inhibitor of EPPase.Upon PP(i) binding, two Ca(2+) at M1 and M2 subsites move closer together and one of the liganded water molecules becomes bridging. The mutual location of PP(i) and the bridging water molecule in the presence of inhibitor cation is catalytically incompetent. To make a favourable PP(i) attack by this water molecule, modelling of a possible hydrolysable conformation of PP(i) in the CaPP(i)-EPPase active site has been performed. The reasons for Ca(2+) being the strong PPase inhibitor and the role in catalysis of each of four metal ions are the mechanistic aspects discussed on the basis of the structures described.


Asunto(s)
Pirofosfato de Calcio/metabolismo , Calcio/metabolismo , Escherichia coli/enzimología , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Sitios de Unión , Calcio/química , Pirofosfato de Calcio/química , Catálisis , Cationes Bivalentes/metabolismo , Cristalografía por Rayos X , Difosfatos/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Magnesio/metabolismo , Modelos Moleculares , Conformación Proteica , Pirofosfatasas/antagonistas & inhibidores , Agua/metabolismo
14.
Biochemistry (Mosc) ; 65(3): 373-87, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10739481

RESUMEN

The causes of inhibition of Escherichia coli inorganic pyrophosphatase (PPase) by Ca2+ were investigated. The interactions of several mutant pyrophosphatases with Ca2+ in the absence of substrate were analyzed by equilibrium dialysis. The kinetics of Ca2+ inhibition of hydrolysis of the substrates MgPPi and LaPPi by the native PPase and three mutant enzymes (Asp-42-Asn, Ala, and Glu) were studied. X-Ray data on E. coli PPase complexed with Ca2+ or CaPPi solved at atomic resolution were analyzed. It was shown that, in the course of the catalytic reaction, Ca2+ replaces Mg2+ at the M2 site, which shows higher affinity for Ca2+ than for Mg2+. Different properties of these cations account for active site deformation. Our findings indicate that the filling of the M2 site with Ca2+ is sufficient for PPase inhibition. This fact proves that Ca2+ is incapable of properly activating the H2O molecule for nucleophilic attack on PPi. It was also demonstrated that Ca2+, as a constituent of the non-hydrolyzable substrate analog CaPPi, competes with MgPPi at the M3 binding site. As a result, Ca2+ is a powerful inhibitor of all known PPases. Other possible reasons for the inhibitory effect of Ca2+ on the enzyme activity are also considered.


Asunto(s)
Calcio/farmacología , Escherichia coli/enzimología , Pirofosfatasas/antagonistas & inhibidores , Alanina/metabolismo , Sustitución de Aminoácidos , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Diálisis , Difosfatos/metabolismo , Ácido Glutámico/metabolismo , Hidrólisis , Pirofosfatasa Inorgánica , Cinética , Lantano/química , Compuestos de Magnesio/metabolismo , Modelos Moleculares , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
15.
Biochemistry (Mosc) ; 64(2): 169-74, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10187907

RESUMEN

Magnesium-supported PPi hydrolysis by the mutant Asp-67Asn E. coli pyrophosphatase at saturating PPi and metal-activator concentrations in the presence of NaF is followed by a gradual decrease in the initial rate of PPi hydrolysis. The reaction occurs in two steps: first a complex containing enzyme, pyrophosphate, magnesium, and fluoride ions is immediately formed, then its conformation changes slowly. This enzyme--substrate complex stabilized by fluoride is partially active and can be isolated by the removal of excess fluoride by gel-filtration.


Asunto(s)
Ácido Aspártico/metabolismo , Escherichia coli/enzimología , Pirofosfatasas/genética , Fluoruro de Sodio/farmacología , Ácido Aspártico/genética , Estabilidad de Enzimas , Pirofosfatasa Inorgánica , Mutagénesis Sitio-Dirigida , Pirofosfatasas/metabolismo
16.
Biochemistry (Mosc) ; 63(6): 671-84, 1998 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9668207

RESUMEN

The three-dimensional structures of four mutant E. coli inorganic pyrophosphatases (PPases) with single Asp-->Asn substitutions at positions 42, 65, 70, and 97 were solved at 1.95, 2.15, 2.10, and 2.20 A resolution, respectively. Asp-42-->Asn and Asp-65-->Asn mutant PPases were prepared as complexes with sulfate--a structural analog of phosphate, the product of enzymatic reaction. A comparison of mutant enzymes with native PPases revealed that a single amino acid substitution changes the position of the mutated residue as well as the positions of several functional groups and some parts of a polypeptide chain. These changes are responsible for the fact that mutant PPases differ from the native ones in their catalytic properties. The sulfate binding to the mutant PPase active site causes molecular asymmetry, as shown for the native PPase earlier. The subunit asymmetry is manifested in different positions of sulfate and several functional groups, as well as changes in packing of hexamers in crystals and in cell parameters.


Asunto(s)
Asparagina/química , Ácido Aspártico/química , Escherichia coli/enzimología , Pirofosfatasas/química , Sustitución de Aminoácidos , Pirofosfatasa Inorgánica , Conformación Proteica , Difracción de Rayos X
17.
Biochemistry (Mosc) ; 63(5): 592-9, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9632898

RESUMEN

The three-dimensional structures of E. coli inorganic pyrophosphatase (PPase) and its complexes with Mn2+ in a high affinity site and with Mg2+ in high and low affinity sites determined by authors in 1994-1996 at 1.9-2.2 A resolution are compared. Metal ion binding initiates the shifts of alpha-carbon atoms and of functional groups and rearrangement of non-covalent interaction system of hexameric enzyme molecule. As a result, the apoPPase with six equal subunits turns after Mg2+ binding into the structure with three types of subunits distinguished by structure and occupance of the low affinity Mg2+ site. Induced asymmetry reflects the subunit interactions and cooperativity between Mg2+ binding sites. These molecular rearrangements are structural basis to account for special features of the enzyme behavior and to propose one of the pathways for enzymatic activity regulation of constitutive PPases in vivo.


Asunto(s)
Escherichia coli/enzimología , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Apoenzimas/química , Apoenzimas/metabolismo , Calcio/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Pirofosfatasa Inorgánica , Magnesio/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
FEBS Lett ; 410(2-3): 502-8, 1997 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-9237692

RESUMEN

The three-dimensional structure of inorganic pyrophosphatase from Escherichia coli complexed with sulfate was determined at 2.2 A resolution using Patterson's search technique and refmed to an R-factor of 19.2%. Sulfate may be regarded as a structural analog of phosphate, the product of the enzyme reaction, and as a structural analog of methyl phosphate, the irreversible inhibitor. Sulfate binds to the pyrophosphatase active site cavity as does phosphate and this diminishes molecular symmetry, converting the homohexamer structure form (alpha3)2 into alpha3'alpha3". The asymmetry of the molecule is manifested in displacements of protein functional groups and some parts of the polypeptide chain and reflects the interaction of subunits and their cooperation. The significance of re-arrangements for pyrophosphatase function is discussed.


Asunto(s)
Sulfato de Amonio/química , Escherichia coli/enzimología , Pirofosfatasas/química , Sulfato de Amonio/metabolismo , Apoenzimas/química , Cristalografía por Rayos X , Pirofosfatasa Inorgánica , Modelos Moleculares , Conformación Proteica , Pirofosfatasas/metabolismo
19.
Biochemistry ; 36(25): 7754-60, 1997 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-9201917

RESUMEN

Crystalline holo inorganic pyrophosphatase from Escherichia coli was grown in the presence of 250 mM MgCl2. The crystal structure has been solved by Patterson search techniques and refined to an R-factor of 17.6% at 1.9 A resolution. The upper estimate of the root-mean-square error in atomic positions is 0.26 A. These crystals belong to space group P3(2)21 with unit cell dimensions a = b = 110.27 A and c = 78.17 A. The asymmetric unit contains a trimer of subunits, i.e., half of the hexameric molecule. In the central cavity of the enzyme molecule, three Mg2+ ions, each shared by two subunits of the hexamer, are found. In the active sites of two crystallographically independent subunits, two Mg2+ ions are bound. The second active site Mg2+ ion is missing in the third subunit. A mechanism of catalysis is proposed whereby a water molecule activated by a Mg2+ ion and Tyr 55 play essential roles.


Asunto(s)
Escherichia coli/enzimología , Pirofosfatasas/química , Sitios de Unión , Cristalografía por Rayos X , Hidrólisis , Pirofosfatasa Inorgánica , Modelos Químicos , Unión Proteica
20.
FEBS Lett ; 399(1-2): 99-102, 1996 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-8980129

RESUMEN

Aspartic acids 65, 67, 70, 97 and 102 in the inorganic pyrophosphatase of Escherichia coli, identified as evolutionarily conserved residues of the active site, have been replaced by asparagine. Each mutation was found to decrease the k(app) value by approx. 2-3 orders of magnitude. At the same time, the Km values changed only slightly. Only minor changes take place in the pK values of the residues essential for both substrate binding and catalysis. All mutant variants have practically the same affinity to Mg2+ as the wild-type pyrophosphatase.


Asunto(s)
Escherichia coli/enzimología , Magnesio/metabolismo , Pirofosfatasas/metabolismo , Sitios de Unión , Catálisis , Concentración de Iones de Hidrógeno , Hidrólisis , Pirofosfatasa Inorgánica , Mutagénesis Sitio-Dirigida , Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...