Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 188, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528446

RESUMEN

BACKGROUND: Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS: Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS: NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION: Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Nanopartículas , Humanos , Rituximab/farmacología , Rituximab/metabolismo , Rituximab/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucocitos Mononucleares/metabolismo , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Ciclofosfamida/metabolismo , ARN Interferente Pequeño/metabolismo
2.
Arch Gerontol Geriatr ; 111: 105016, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031654

RESUMEN

PURPOSE: Using mesenchymal stem cells (MSCs) is a promising method in regenerative medicine. Limited proliferation and aging process of MSC are the most common problems in MSCs application. In the present study, we intend to investigate the anti-aging properties of pistachio pericarp in bone marrow-derived MSCs of old male rats. MATERIALS AND METHODS: First, 1000, 2000, and 3000 µg/mL AEPP were used to treat MSCs derived from bone marrow for 24 h at 37 °C. Then, cell viability, population doubling time, the percentage of senescent cells, telomere length, telomerase activity, and the expression of TRF1 and RAP1 when bone marrow-derived MSCs treated with AEPP were investigated. RESULTS: The results showed that cell viability increased when MSCs derived from bone marrow were treated with 2000 and 3000 µg/mL AEPP, indicating this extract may stimulate proliferation. The population doubling time was also enhanced with an increase in AEPP concentration. Importantly, an increase in AEPP concentration significantly reduced senescent cell percentage. Telomere length, telomerase activity, and the expression of anti-aging genes were significantly increased with the increase of AEPP dose. CONCLUSION: Taken together, AEPP has been used as a natural compound with excellent proliferation and anti-aging ability in MSCs. As new therapeutic candidates with promising effects, it can be used with high safety by multiplying cells and delaying the aging process. However, more studies are needed and the anti-aging effects of this extract should be well confirmed in animal models and clinical trials.


Asunto(s)
Células Madre Mesenquimatosas , Pistacia , Telomerasa , Masculino , Humanos , Ratas , Animales , Telomerasa/genética , Telomerasa/metabolismo , Pistacia/metabolismo , Envejecimiento , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular , Diferenciación Celular
3.
Life Sci ; 309: 121008, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179812

RESUMEN

BACKGROUND: Abnormal function or overexpression of CD73 and EZH2 within the tumor microenvironment and tumor cells enhances tumor growth and progression, and in many cases, causes drug resistance. Hence, it seems that silencing the expression of CD73 and EZH2 molecules in breast cancer reduces cancer development and enhances anti-tumor immune responses. METHODS: we used siRNA-loaded superparamagnetic iron oxide (SPIONs) nanoparticles (NPs) coated with trimethyl chitosan (TMC) and functionalized with folic acid for co-delivery of EZH2/CD73 siRNAs to 4 T1 murine cancer cells both in vitro and in vivo. RESULTS: Combination therapy markedly inhibited cancer cells' proliferation, migration, and viability and induced apoptosis in vitro. Moreover, in vivo administration of this combination therapy promoted tumor regression and induced anti-tumor immune responses. DISCUSSION: The findings indicated the CD73/EZH2 factors inhibition by SPION-TMC-FA NPs as a promising therapeutic strategy in breast cancer treatment.


Asunto(s)
Quitosano , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , ARN Interferente Pequeño/genética , Ácido Fólico/farmacología , Nanopartículas Magnéticas de Óxido de Hierro , Línea Celular Tumoral , Microambiente Tumoral , Proteína Potenciadora del Homólogo Zeste 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...