Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 14(5): 737-751, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230747

RESUMEN

Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Transducción de Señal
2.
Nature ; 559(7712): 125-129, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29950729

RESUMEN

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Asunto(s)
Aminopiridinas/farmacología , Resistencia a Antineoplásicos/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/genética , Mutación , Multimerización de Proteína/genética , Triazinas/farmacología , Alelos , Sitio Alostérico/efectos de los fármacos , Sitio Alostérico/genética , Aminopiridinas/química , Aminopiridinas/uso terapéutico , Animales , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Glutamina/genética , Glutaratos/sangre , Glutaratos/metabolismo , Células HEK293 , Humanos , Isoleucina/genética , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas Mutantes/antagonistas & inhibidores , Triazinas/química , Triazinas/uso terapéutico
3.
Cancer Cell ; 33(1): 44-59.e8, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29275866

RESUMEN

Mutations in epigenetic modifiers and signaling factors often co-occur in myeloid malignancies, including TET2 and NRAS mutations. Concurrent Tet2 loss and NrasG12D expression in hematopoietic cells induced myeloid transformation, with a fully penetrant, lethal chronic myelomonocytic leukemia (CMML), which was serially transplantable. Tet2 loss and Nras mutation cooperatively led to decrease in negative regulators of mitogen-activated protein kinase (MAPK) activation, including Spry2, thereby causing synergistic activation of MAPK signaling by epigenetic silencing. Tet2/Nras double-mutant leukemia showed preferential sensitivity to MAPK kinase (MEK) inhibition in both mouse model and patient samples. These data provide insights into how epigenetic and signaling mutations cooperate in myeloid transformation and provide a rationale for mechanism-based therapy in CMML patients with these high-risk genetic lesions.


Asunto(s)
Proteínas de Unión al ADN/genética , GTP Fosfohidrolasas/genética , Leucemia Mielomonocítica Crónica/genética , Proteínas de la Membrana/genética , Proteínas de Unión al GTP Monoméricas/genética , Mutación/genética , Proteínas Proto-Oncogénicas/genética , Animales , Transformación Celular Neoplásica/genética , Dioxigenasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Transgénicos , Trastornos Mieloproliferativos/genética , Proteínas Serina-Treonina Quinasas , Transducción de Señal/genética
4.
Curr Protoc Pharmacol ; 77: 14.40.1-14.40.19, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28640953

RESUMEN

Myeloproliferative neoplasms (MPNs) are a class of hematologic diseases characterized by aberrant proliferation of one or more myeloid lineages and progressive bone marrow fibrosis. In 2005, seminal work by multiple groups identified the JAK2V617F mutation in a significant fraction of MPN patients. Since that time, murine models of JAK2V617F have greatly enhanced the understanding of the role of aberrant JAK-STAT signaling in MPN pathogenesis and have provided an in vivo pre-clinical platform that can be used to develop novel therapies. From early retroviral transduction models to transgenics, and ultimately conditional knock-ins, murine models have established that JAK2V617F alone can induce an MPN-like syndrome in vivo. However, additional mutations co-occur with JAK2V617F in MPNs, often in proteins involved in epigenetic regulation that can dramatically influence disease outcomes. In vivo modeling of these mutations in the context of JAK2V617F has provided additional insights into the role of epigenetic dysregulation in augmenting MPN hematopoiesis. In this overview, early murine model development of JAK2V617F is described, with an analysis of its effects on the hematopoietic stem/progenitor cell niche and interactions with downstream signaling elements. This is followed by a description of more recent in vivo models developed for evaluating the effect of concomitant mutations in epigenetic modifiers on MPN maintenance and progression. Mouse models of other driver mutations in MPNs, including primarily calreticulin (CALR) and Tpo-receptor (MPL), which occur in a significant percentage of MPN patients with wild-type JAK2, are also briefly reviewed. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Modelos Animales de Enfermedad , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia/genética , Trastornos Mieloproliferativos/genética , Animales , Calreticulina/genética , Calreticulina/metabolismo , Línea Celular Tumoral , Epigénesis Genética , Técnicas de Sustitución del Gen , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Leucemia/metabolismo , Leucemia/prevención & control , Ratones Transgénicos , Mutación , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal
5.
Cancer Discov ; 7(5): 494-505, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28193779

RESUMEN

Genomic studies in acute myeloid leukemias (AML) have identified mutations that drive altered DNA methylation, including TET2 and IDH2 Here, we show that models of AML resulting from TET2 or IDH2 mutations combined with FLT3ITD mutations are sensitive to 5-azacytidine or to the IDH2 inhibitor AG-221, respectively. 5-azacytidine and AG-221 treatment induced an attenuation of aberrant DNA methylation and transcriptional output and resulted in a reduction in leukemic blasts consistent with antileukemic activity. These therapeutic benefits were associated with restoration of leukemic cell differentiation, and the normalization of hematopoiesis was derived from mutant cells. By contrast, combining AG-221 or 5-azacytidine with FLT3 inhibition resulted in a reduction in mutant allele burden, progressive recovery of normal hematopoiesis from non-mutant stem-progenitor cells, and reversal of dysregulated DNA methylation and transcriptional output. Together, our studies suggest combined targeting of signaling and epigenetic pathways can increase therapeutic response in AML.Significance: AMLs with mutations in TET2 or IDH2 are sensitive to epigenetic therapy through inhibition of DNA methyltransferase activity by 5-azacytidine or inhibition of mutant IDH2 through AG-221. These inhibitors induce a differentiation response and can be used to inform mechanism-based combination therapy. Cancer Discov; 7(5); 494-505. ©2017 AACR.See related commentary by Thomas and Majeti, p. 459See related article by Yen et al., p. 478This article is highlighted in the In This Issue feature, p. 443.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Unión al ADN/genética , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Proteínas Proto-Oncogénicas/genética , Aminopiridinas/farmacología , Animales , Azacitidina/farmacología , Metilación de ADN/efectos de los fármacos , Dioxigenasas , Epigénesis Genética/efectos de los fármacos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Mutantes , Mutación , Transducción de Señal/efectos de los fármacos , Triazinas/farmacología , Tirosina Quinasa 3 Similar a fms/genética
6.
Blood ; 129(13): 1779-1790, 2017 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-28077417

RESUMEN

Recent studies have reported that activation-induced cytidine deaminase (AID) and ten-eleven-translocation (TET) family members regulate active DNA demethylation. Genetic alterations of TET2 occur in myeloid malignancies, and hematopoietic-specific loss of Tet2 induces aberrant hematopoietic stem cell (HSC) self-renewal/differentiation, implicating TET2 as a master regulator of normal and malignant hematopoiesis. Despite the functional link between AID and TET in epigenetic gene regulation, the role of AID loss in hematopoiesis and myeloid transformation remains to be investigated. Here, we show that Aid loss in mice leads to expansion of myeloid cells and reduced erythroid progenitors resulting in anemia, with dysregulated expression of Cebpa and Gata1, myeloid/erythroid lineage-specific transcription factors. Consistent with data in the murine context, silencing of AID in human bone marrow cells skews differentiation toward myelomonocytic lineage. However, in contrast to Tet2 loss, Aid loss does not contribute to enhanced HSC self-renewal or cooperate with Flt3-ITD to induce myeloid transformation. Genome-wide transcription and differential methylation analysis uncover the critical role of Aid as a key epigenetic regulator. These results indicate that AID and TET2 share common effects on myeloid and erythroid lineage differentiation, however, their role is nonredundant in regulating HSC self-renewal and in myeloid transformation.


Asunto(s)
Diferenciación Celular , Citidina Desaminasa/fisiología , Metilación de ADN , Células Madre Hematopoyéticas/metabolismo , Animales , Linaje de la Célula , Autorrenovación de las Células , Transformación Celular Neoplásica , Citidina Desaminasa/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Dioxigenasas , Células Eritroides/citología , Silenciador del Gen , Células Madre Hematopoyéticas/citología , Humanos , Ratones , Células Mieloides/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...