Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Med Chem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088428

RESUMEN

Anthracyclines comprise one of the most effective anticancer drug classes. Doxorubicin, daunorubicin, epirubicin, and idarubicin have been in clinical use for decades, but their application remains complicated by treatment-related toxicities and drug resistance. We previously demonstrated that the combination of DNA damage and histone eviction exerted by doxorubicin drives its associated adverse effects. However, whether the same properties dictate drug resistance is unclear. In the present study, we evaluate a library of 40 anthracyclines on their cytotoxicity, intracellular uptake, and subcellular localization in K562 wildtype versus ABCB1-transporter-overexpressing, doxorubicin-resistant cells. We identify several highly potent cytotoxic anthracyclines. Among these, N,N-dimethyl-idarubicin and anthracycline (composed of the idarubicin aglycon and the aclarubicin trisaccharide) stand out, due to their histone eviction-mediated cytotoxicity toward doxorubicin-resistant cells. Our findings thus uncover understudied anthracycline variants warranting further investigation in the quest for safer and more effective anticancer agents that circumvent cellular export by ABCB1.

2.
Elife ; 122024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106189

RESUMEN

Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.


Asunto(s)
Retículo Endoplásmico , Esfingomielinas , Esfingomielinas/metabolismo , Esfingomielinas/biosíntesis , Humanos , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Multimerización de Proteína , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Técnicas de Inactivación de Genes , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis
3.
J Biol Chem ; : 107645, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39127175

RESUMEN

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNß induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNß transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor IRF3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits binding of IRF3 to the IFNß promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.

4.
Trends Cancer ; 10(8): 696-707, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825423

RESUMEN

Recent genome-wide analyses identified chromatin modifiers as one of the most frequently mutated classes of genes across all cancers. However, chemotherapies developed for cancers involving DNA damage remain the standard of care for chromatin-deranged malignancies. In this review we address this conundrum by establishing the concept of 'chromatin damage': the non-genetic damage to protein-DNA interactions induced by certain small molecules. We highlight anthracyclines, a class of chemotherapeutic agents ubiquitously applied in oncology, as an example of overlooked chromatin-targeting agents. We discuss our current understanding of this phenomenon and explore emerging chromatin-damaging agents as a basis for further studies to maximize their impact in modern cancer treatment.


Asunto(s)
Antineoplásicos , Cromatina , Daño del ADN , Neoplasias , Humanos , Cromatina/metabolismo , Cromatina/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Daño del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida/métodos , Antraciclinas/uso terapéutico , Antraciclinas/farmacología , Animales
5.
Cells ; 13(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38920629

RESUMEN

The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Glioblastoma , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Animales
6.
iScience ; 27(6): 110120, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38939106

RESUMEN

Human leukocyte antigen (HLA) class-I molecules present fragments of the cellular proteome to the T cell receptor (TCR) of cytotoxic T cells to control infectious diseases and cancer. The large number of combinations of HLA class-I allotypes and peptides allows for highly specific and dedicated low-affinity interactions to a diverse array of TCRs and natural killer (NK) cell receptors. Whether the divergent HLA class-I peptide complex is exclusive for interactions with these proteins is unknown. Using genome-wide CRISPR-Cas9 activation and knockout screens, we identified peptide-specific HLA-C∗07 combinations that can interact with the surface molecules CD55 and heparan sulfate. These interactions closely resemble the HLA class-I interaction with the TCR regarding both the affinity range and the specificity of the peptide and HLA allele. These findings indicate that various proteins can specifically bind HLA class-I peptide complexes due to their polymorphic nature, which suggests there are more interactions like the ones we describe here.

7.
Mol Cancer ; 23(1): 120, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831402

RESUMEN

The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.


Asunto(s)
Aclarubicina , Antraciclinas , Leucemia Mieloide Aguda , Animales , Femenino , Humanos , Masculino , Aclarubicina/farmacología , Aclarubicina/uso terapéutico , Antraciclinas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Resultado del Tratamiento
8.
Front Bioeng Biotechnol ; 12: 1363803, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481571

RESUMEN

Introduction: Daunorubicin and doxorubicin, two anthracycline polyketides produced by S. peucetius, are potent anticancer agents that are widely used in chemotherapy, despite severe side effects. Recent advances have highlighted the potential of producing improved derivatives with reduced side effects by incorporating l-rhodosamine, the N,N-dimethyl analogue of the native amino sugar moiety. Method: In this study, we aimed to produce N,N-dimethylated anthracyclines by engineering the doxorubicin biosynthetic pathway in the industrial Streptomyces peucetius strain G001. To achieve this, we introduced genes from the aclarubicin biosynthetic pathway encoding the sugar N-methyltransferases AclP and AknX2. Furthermore, the native gene for glycosyltransferase DnrS was replaced with genes encoding the aclarubicin glycosyltransferases AknS and AknT. Additionally, the gene for methylesterase RdmC from the rhodomycin biosynthetic pathway was introduced. Results: A new host was engineered successfully, whereby genes from the aclarubicin pathway were introduced and expressed. LC-MS/MS analysis of the engineered strains showed that dimethylated sugars were efficiently produced, and that these were incorporated ino the anthracycline biosynthetic pathway to produce the novel dimethylated anthracycline N,N-dimethyldaunorubicin. Further downstream tailoring steps catalysed by the cytochrome P450 monooxygenase DoxA exhibited limited efficacy with N,N-dimethylated substrates. This resulted in only low production levels of N,N-dimethyldaunorubicin and no N,N-dimethyldoxorubicin, most likely due to the low affinity of DoxA for dimethylated substrates. Discussion: S. peucetius G001 was engineered such as to produce N,N-dimethylated sugars, which were incorporated into the biosynthetic pathway. This allowed the successful production of N,N-dimethyldaunorubicin, an anticancer drug with reduced cytotoxicity. DoxA is the key enzyme that determines the efficiency of the biosynthesis of N,N-dimethylated anthracyclines, and engineering of this enzyme will be a major step forwards towards the efficient production of more N,N-dimethylated anthracyclines, including N,N-dimethyldoxorubicin. This study provides valuable insights into the biosynthesis of clinically relevant daunorubicin derivatives, highlighting the importance of combinatorial biosynthesis.

9.
Chembiochem ; 25(9): e202400111, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38476018

RESUMEN

Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.


Asunto(s)
ADN , Marcaje Isotópico , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , ADN/química , ADN/metabolismo , Antraciclinas/química , Antraciclinas/metabolismo , Antraciclinas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Aclarubicina/química , Aclarubicina/farmacología , Aclarubicina/metabolismo , Resonancia Magnética Nuclear Biomolecular
10.
iScience ; 27(3): 109139, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384853

RESUMEN

Cardiotoxicity remains a major cause of drug withdrawal, partially due to lacking predictability of animal models. Additionally, risk of cardiotoxicity following treatment of cancer patients is treatment limiting. It is unclear which patients will develop heart failure following therapy. Human pluripotent stem cell (hPSC)-derived cardiomyocytes present an unlimited cell source and may offer individualized solutions to this problem. We developed a platform to predict molecular and functional aspects of cardiotoxicity. Our platform can discriminate between the different cardiotoxic mechanisms of existing and novel anthracyclines Doxorubicin, Aclarubicin, and Amrubicin. Doxorubicin and Aclarubicin unlike Amrubicin substantially affected the transcriptome, mitochondrial membrane integrity, contractile force and transcription factor availability. Cardiomyocytes recovered fully within two or three weeks, corresponding to the intermittent clinical treatment regimen. Our system permits the study of hPSC-cardiomyocyte recovery and the effects of accumulated dose after multiple dosing, allowing individualized cardiotoxicity evaluation, which effects millions of cancer patients treated annually.

11.
iScience ; 27(2): 108884, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318352

RESUMEN

Saliva is a complex bodily fluid composed of secretions by major and minor salivary glands. Salivary glands and their secretions are known to be unevenly distributed in the human oral cavity. Moreover, saliva flow rate and composition vary across locations and time of the day. This remarkable heterogeneity of salivary secretions suggests that different subtypes of saliva fulfill different functions. By coupling a non-invasive and facile collection method with comprehensive metabolomic profiling, we investigated the spatial and temporal distributions of salivary components. We identified location-specific metabolite profiles, novel oscillating metabolites, and location-specific diurnal patterns. In summary, our study paves the way for a deeper and more comprehensive understanding of the complex dynamics and functionalities of the salivary metabolome and its integration in multi-omics studies related to oral and systemic (patho-)physiology.

12.
J Immunol ; 212(3): 446-454, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088808

RESUMEN

MHC class I (MHC-I) molecules are critical for CD8+ T cell responses to viral infections and malignant cells, and tumors can downregulate MHC-I expression to promote immune evasion. In this study, using a genome-wide CRISPR screen on a human melanoma cell line, we identified the polycomb repressive complex 1 (PRC1) subunit PCGF1 and the deubiquitinating enzyme BAP1 as opposite regulators of MHC-I transcription. PCGF1 facilitates deposition of ubiquitin at H2AK119 at the MHC-I promoters to silence MHC-I, whereas BAP1 removes this modification to restore MHC-I expression. PCGF1 is widely expressed in tumors and its depletion increased MHC-I expression in multiple tumor lines, including MHC-Ilow tumors. In cells characterized by poor MHC-I expression, PRC1 and PRC2 act in parallel to impinge low transcription. However, PCGF1 depletion was sufficient to increase MHC-I expression and restore T cell-mediated killing of the tumor cells. Taken together, our data provide an additional layer of regulation of MHC-I expression in tumors: epigenetic silencing by PRC1 subunit PCGF1.


Asunto(s)
Histonas , Ubiquitina , Humanos , Histonas/metabolismo , Ubiquitina/metabolismo , Epigénesis Genética , Complejo Represivo Polycomb 1/metabolismo , Línea Celular , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
13.
Brain Behav Immun ; 115: 588-599, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984623

RESUMEN

BACKGROUND: Cancer survivors can experience long lasting fatigue resulting in a lower quality of life. How chemotherapy treatment contributes to this fatigue is poorly understood. Previously we have shown in a mouse model of cancer related fatigue that doxorubicin treatment induces fatigue-like symptoms related to disturbed circadian rhythms. However, the specific components of the circadian regulatory circuitry affected by doxorubicin treatment remained unclear. Therefore we investigated the role of the central circadian clock, the suprachiasmatic nucleus (SCN), in chemotherapy-induced fatigue. METHODS: We measured circadian controlled behavior and multiunit neuronal activity in the SCN in freely moving mice exhibiting fatigue-like behavior after doxorubicin treatment under both light-dark (LD) and constant dark (DD) conditions. Additionally, we assessed the expression of inflammation related genes in spleen and kidney as potential inducers of CRF. RESULTS: Doxorubicin treatment significantly reduced both the running wheel activity and time spent using the running wheel for over five weeks after treatment. In contrast to the pronounced effects on behavior and neuronal activity of doxorubicin on circadian rhythms, peripheral inflammation markers only showed minor differences, five weeks after the last treatment. Surprisingly, the circadian SCN neuronal activity under both LD and DD conditions was not affected. However, the circadian timing of neuronal activity in peri-SCN areas (the brain areas surrounding SCN) and circadian rest-activity behavior was strongly affected by doxorubicin, suggesting that the output of the SCN was altered. The reduced correlation between the SCN neuronal activity and behavioral activity after doxorubicin treatment, suggests that the information flow from the SCN to the periphery was disturbed. CONCLUSION: Our preclinical study suggests that chemotherapy-induced fatigue disrupts the circadian rhythms in peripheral brain areas and behavior downstream from the SCN, potentially leading to fatigue like symptoms. Our data suggest that peripheral inflammation responses are less important for the maintenance of fatigue. Chronotherapy that realigns circadian rhythms could represent a non-invasive way to improve patient outcomes following chemotherapy.


Asunto(s)
Antineoplásicos , Relojes Circadianos , Ratones , Humanos , Animales , Calidad de Vida , Ritmo Circadiano/fisiología , Inflamación , Doxorrubicina , Antineoplásicos/efectos adversos
14.
Cell Rep ; 42(12): 113516, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38048225

RESUMEN

The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/metabolismo , Receptor Leucocitario Tipo Inmunoglobulina B1/metabolismo , Células Asesinas Naturales , Ligandos , Péptidos/metabolismo , Neoplasias/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(50): e2315163120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055744

RESUMEN

Interferon-induced ubiquitin (Ub)-like modifier ISG15 covalently modifies host and viral proteins to restrict viral infections. Its function is counteracted by the canonical deISGylase USP18 or Ub-specific protease 18. Notwithstanding indications for the existence of other ISG15 cross-reactive proteases, these remain to be identified. Here, we identify deubiquitinase USP16 as an ISG15 cross-reactive protease by means of ISG15 activity-based profiling. Recombinant USP16 cleaved pro-ISG15 and ISG15 isopeptide-linked model substrates in vitro, as well as ISGylated substrates from cell lysates. Moreover, interferon-induced stimulation of ISGylation was increased by depletion of USP16. The USP16-dependent ISG15 interactome indicated that the deISGylating function of USP16 may regulate metabolic pathways. Targeted enzymes include malate dehydrogenase, cytoplasmic superoxide dismutase 1, fructose-bisphosphate aldolase A, and cytoplasmic glutamic-oxaloacetic transaminase 1. USP16 may thus contribute to the regulation of a subset of metabolism-related proteins during type-I interferon responses.


Asunto(s)
Citocinas , Interferón Tipo I , Citocinas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Péptido Hidrolasas/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Enzimas Desubicuitinizantes
16.
J Med Chem ; 66(16): 11390-11398, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37561481

RESUMEN

The anthracycline anti-cancer drugs are intensely used in the clinic to treat a wide variety of cancers. They generate DNA double strand breaks, but recently the induction of chromatin damage was introduced as another major determinant of anti-cancer activity. The combination of these two events results in their reported side effects. While our knowledge on the structure-activity relationship of anthracyclines has improved, many structural variations remain poorly explored. Therefore, we here report on the preparation of a diverse set of anthracyclines with variations within the sugar moiety, amine alkylation pattern, saccharide chain and aglycone. We assessed the cytotoxicity in vitro in relevant human cancer cell lines, and the capacity to induce DNA- and chromatin damage. This coherent set of data allowed us to deduce a few guidelines on anthracycline design, as well as discover novel, highly potent anthracyclines that may be better tolerated by patients.


Asunto(s)
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacología , Antraciclinas/química , Doxorrubicina/farmacología , Antibióticos Antineoplásicos/química , Inhibidores de Topoisomerasa II , Cromatina , ADN/metabolismo , Neoplasias/tratamiento farmacológico
17.
Stem Cell Reports ; 18(9): 1793-1810, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37541258

RESUMEN

CRB1 gene mutations can cause early- or late-onset retinitis pigmentosa, Leber congenital amaurosis, or maculopathy. Recapitulating human CRB1 phenotypes in animal models has proven challenging, necessitating the development of alternatives. We generated human induced pluripotent stem cell (iPSC)-derived retinal organoids of patients with retinitis pigmentosa caused by biallelic CRB1 mutations and evaluated them against autologous gene-corrected hiPSCs and hiPSCs from healthy individuals. Patient organoids show decreased levels of CRB1 and NOTCH1 expression at the retinal outer limiting membrane. Proximity ligation assays show that human CRB1 and NOTCH1 can interact via their extracellular domains. CRB1 patient organoids feature increased levels of WDFY1+ vesicles, fewer RAB11A+ recycling endosomes, decreased VPS35 retromer complex components, and more degradative endolysosomal compartments relative to isogenic control organoids. Taken together, our data demonstrate that patient-derived retinal organoids enable modeling of retinal degeneration and highlight the importance of CRB1 in early endosome maturation receptor recycling in the retina.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Retinitis Pigmentosa , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Retinitis Pigmentosa/genética , Mutación , Organoides/metabolismo , Proteínas del Ojo/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
18.
ACS Chem Biol ; 18(9): 2003-2013, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37642399

RESUMEN

Ubiquitin thioesterase OTUB2, a cysteine protease from the ovarian tumor (OTU) deubiquitinase superfamily, is often overexpressed during tumor progression and metastasis. Development of OTUB2 inhibitors is therefore believed to be therapeutically important, yet potent and selective small-molecule inhibitors targeting OTUB2 are scarce. Here, we describe the development of an improved OTUB2 inhibitor, LN5P45, comprising a chloroacethydrazide moiety that covalently reacts to the active-site cysteine residue. LN5P45 shows outstanding target engagement and proteome-wide selectivity in living cells. Importantly, LN5P45 as well as other OTUB2 inhibitors strongly induce monoubiquitination of OTUB2 on lysine 31. We present a route to future OTUB2-related therapeutics and have shown that the OTUB2 inhibitor developed in this study can help to uncover new aspects of the related biology and open new questions regarding the understanding of OTUB2 regulation at the post-translational modification level.


Asunto(s)
Proteasas de Cisteína , Procesamiento Proteico-Postraduccional , Ubiquitinación , Ubiquitina , Cisteína
19.
PLoS Biol ; 21(7): e3002182, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410798

RESUMEN

The viral hemagglutinins of conventional influenza A viruses (IAVs) bind to sialylated glycans on host cell surfaces for attachment and subsequent infection. In contrast, hemagglutinins of bat-derived IAVs target major histocompatibility complex class II (MHC-II) for cell entry. MHC-II proteins from various vertebrate species can facilitate infection with the bat IAV H18N11. Yet, it has been difficult to biochemically determine the H18:MHC-II binding. Here, we followed a different approach and generated MHC-II chimeras from the human leukocyte antigen DR (HLA-DR), which supports H18-mediated entry, and the nonclassical MHC-II molecule HLA-DM, which does not. In this context, viral entry was supported only by a chimera containing the HLA-DR α1, α2, and ß1 domains. Subsequent modeling of the H18:HLA-DR interaction identified the α2 domain as central for this interaction. Further mutational analyses revealed highly conserved amino acids within loop 4 (N149) and ß-sheet 6 (V190) of the α2 domain as critical for virus entry. This suggests that conserved residues in the α1, α2, and ß1 domains of MHC-II mediate H18-binding and virus propagation. The conservation of MHC-II amino acids, which are critical for H18N11 binding, may explain the broad species specificity of this virus.


Asunto(s)
Quirópteros , Virus de la Influenza A , Animales , Humanos , Aminoácidos , Antígenos de Histocompatibilidad Clase II , Antígenos HLA-DR/metabolismo , Antígenos HLA
20.
EMBO J ; 42(18): e111252, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37519262

RESUMEN

Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.


Asunto(s)
Filamentos Intermedios , Estrés Proteotóxico , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...