Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 563(7733): 701-704, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429614

RESUMEN

Human pluripotent cell lines hold enormous promise for the development of cell-based therapies. Safety, however, is a crucial prerequisite condition for clinical applications. Numerous groups have attempted to eliminate potentially harmful cells through the use of suicide genes1, but none has quantitatively defined the safety level of transplant therapies. Here, using genome-engineering strategies, we demonstrate the protection of a suicide system from inactivation in dividing cells. We created a transcriptional link between the suicide gene herpes simplex virus thymidine kinase (HSV-TK) and a cell-division gene (CDK1); this combination is designated the safe-cell system. Furthermore, we used a mathematical model to quantify the safety level of the cell therapy as a function of the number of cells that is needed for the therapy and the type of genome editing that is performed. Even with the highly conservative estimates described here, we anticipate that our solution will rapidly accelerate the entry of cell-based medicine into the clinic.


Asunto(s)
Proteína Quinasa CDC2/genética , División Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Genes Transgénicos Suicidas/genética , Seguridad del Paciente , Animales , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ganciclovir/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simplexvirus/enzimología , Simplexvirus/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
2.
PLoS One ; 11(10): e0164457, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27755557

RESUMEN

The ability to yield glucose-responsive pancreatic beta-cells from human pluripotent stem cells in vitro will facilitate the development of the cell replacement therapies for the treatment of Type 1 Diabetes. Here, through the sequential in vitro targeting of selected signaling pathways, we have developed an abbreviated five-stage protocol (25-30 days) to generate human Embryonic Stem Cell-Derived Beta-like Cells (ES-DBCs). We showed that Geltrex, as an extracellular matrix, could support the generation of ES-DBCs more efficiently than that of the previously described culture systems. The activation of FGF and Retinoic Acid along with the inhibition of BMP, SHH and TGF-beta led to the generation of 75% NKX6.1+/NGN3+ Endocrine Progenitors. The inhibition of Notch and tyrosine kinase receptor AXL, and the treatment with Exendin-4 and T3 in the final stage resulted in 35% mono-hormonal insulin positive cells, 1% insulin and glucagon positive cells and 30% insulin and NKX6.1 co-expressing cells. Functionally, ES-DBCs were responsive to high glucose in static incubation and perifusion studies, and could secrete insulin in response to successive glucose stimulations. Mitochondrial metabolic flux analyses using Seahorse demonstrated that the ES-DBCs could efficiently metabolize glucose and generate intracellular signals to trigger insulin secretion. In conclusion, targeting selected signaling pathways for 25-30 days was sufficient to generate ES-DBCs in vitro. The ability of ES-DBCs to secrete insulin in response to glucose renders them a promising model for the in vitro screening of drugs, small molecules or genes that may have potential to influence beta-cell function.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Células Secretoras de Insulina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Endodermo/citología , Endodermo/metabolismo , Exenatida , Glucosa/farmacología , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Análisis de Flujos Metabólicos , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/farmacología , Ponzoñas/farmacología
3.
J Cell Physiol ; 231(9): 1994-2006, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26755186

RESUMEN

The generation of definitive endoderm (DE) from pluripotent stem cells (PSCs) is a fundamental stage in the formation of highly organized visceral organs, such as the liver and pancreas. Currently, there is a need for a comprehensive study that illustrates the involvement of different signaling pathways and their interactions in the derivation of DE cells from PSCs. This study aimed to identify signaling pathways that have the greatest influence on DE formation using analyses of transcriptional profiles, protein-protein interactions, protein-DNA interactions, and protein localization data. Using this approach, signaling networks involved in DE formation were constructed using systems biology and data mining tools, and the validity of the predicted networks was confirmed experimentally by measuring the mRNA levels of hub genes in several PSCs-derived DE cell lines. Based on our analyses, seven signaling pathways, including the BMP, ERK1-ERK2, FGF, TGF-beta, MAPK, Wnt, and PIP signaling pathways and their interactions, were found to play a role in the derivation of DE cells from PSCs. Lastly, the core gene regulatory network governing this differentiation process was constructed. The results of this study could improve our understanding surrounding the efficient generation of DE cells for the regeneration of visceral organs. J. Cell. Physiol. 231: 1994-2006, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Endodermo/citología , Redes Reguladoras de Genes , Páncreas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Activinas/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias Humanas/citología , Humanos , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...