RESUMEN
Background: Although there are several efficacious vaccines against COVID-19, vaccination rates in many regions around the world remain insufficient to prevent continued high disease burden and emergence of viral variants. Repurposing of existing therapeutics that prevent or mitigate severe COVID-19 could help to address these challenges. The objective of this study was to determine whether prior use of bisphosphonates is associated with reduced incidence and/or severity of COVID-19. Methods: A retrospective cohort study utilizing payer-complete health insurance claims data from 8,239,790 patients with continuous medical and prescription insurance January 1, 2019 to June 30, 2020 was performed. The primary exposure of interest was use of any bisphosphonate from January 1, 2019 to February 29, 2020. Bisphosphonate users were identified as patients having at least one bisphosphonate claim during this period, who were then 1:1 propensity score-matched to bisphosphonate non-users by age, gender, insurance type, primary-care-provider visit in 2019, and comorbidity burden. Main outcomes of interest included: (a) any testing for SARS-CoV-2 infection; (b) COVID-19 diagnosis; and (c) hospitalization with a COVID-19 diagnosis between March 1, 2020 and June 30, 2020. Multiple sensitivity analyses were also performed to assess core study outcomes amongst more restrictive matches between BP users/non-users, as well as assessing the relationship between BP-use and other respiratory infections (pneumonia, acute bronchitis) both during the same study period as well as before the COVID outbreak. Results: A total of 7,906,603 patients for whom continuous medical and prescription insurance information was available were selected. A total of 450,366 bisphosphonate users were identified and 1:1 propensity score-matched to bisphosphonate non-users. Bisphosphonate users had lower odds ratios (OR) of testing for SARS-CoV-2 infection (OR = 0.22; 95%CI:0.21-0.23; p<0.001), COVID-19 diagnosis (OR = 0.23; 95%CI:0.22-0.24; p<0.001), and COVID-19-related hospitalization (OR = 0.26; 95%CI:0.24-0.29; p<0.001). Sensitivity analyses yielded results consistent with the primary analysis. Bisphosphonate-use was also associated with decreased odds of acute bronchitis (OR = 0.23; 95%CI:0.22-0.23; p<0.001) or pneumonia (OR = 0.32; 95%CI:0.31-0.34; p<0.001) in 2019, suggesting that bisphosphonates may protect against respiratory infections by a variety of pathogens, including but not limited to SARS-CoV-2. Conclusions: Prior bisphosphonate-use was associated with dramatically reduced odds of SARS-CoV-2 testing, COVID-19 diagnosis, and COVID-19-related hospitalizations. Prospective clinical trials will be required to establish a causal role for bisphosphonate-use in COVID-19-related outcomes. Funding: This study was supported by NIH grants, AR068383 and AI155865, a grant from MassCPR (to UHvA) and a CRI Irvington postdoctoral fellowship, CRI2453 (to PH).
The COVID-19 pandemic challenged the world to rapidly develop strategies to combat the virus responsible for the disease. While several effective vaccines and new drugs have since become available, these therapies are not always easy to access and take time to generate and distribute. To address these challenges, researchers have tried to find ways to repurpose existing medications that are already commonly used and known to be safe. One potential candidate are bisphosphonates, a family of drugs used to reduce bone loss in patients with osteoporosis. Bisphosphonates have been shown to boost the immune response to viral infections, and it has been observed that patients prescribed these drugs are less likely to develop or die from pneumonia. But whether bisphosphonates are effective against COVID-19 had not been fully explored. To investigate, Thompson, Wang et al. analyzed insurance claims data from about 8 million patients between January 2019 and June 2020, including around 450,000 individuals that had filled a prescription for bisphosphonates. Patients prescribed bisphosphonates were then compared to non-users that were similar in terms of their gender, age, the type of health insurance they had, their access to healthcare, and other health comorbidities. The study revealed that bisphosphonate users were around three to five times less likely to be tested for, diagnosed with, or hospitalized for COVID-19 during the first four months of the pandemic. They were also less commonly diagnosed with other respiratory infections in 2019, like bronchitis or pneumonia. Although the results suggest that bisphosphonates provide some protection against COVID-19, they cannot directly prove it. Verifying that bisphosphonates can treat or prevent COVID-19 and/or other respiratory infections requires more studies that follow patients in real-time rather than studying previously collected data. If such studies confirm the link, bisphosphonates could be a helpful tool to protect against COVID-19 or other virus outbreaks. The drugs are widely available, safe, and affordable, and therefore may provide an alternative for patients who cannot access other medications or vaccines.
Asunto(s)
Bronquitis , COVID-19 , Infecciones del Sistema Respiratorio , Humanos , COVID-19/epidemiología , Difosfonatos/uso terapéutico , Prueba de COVID-19 , SARS-CoV-2 , Estudios Retrospectivos , Vacunas contra la COVID-19 , Estudios Prospectivos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Bronquitis/tratamiento farmacológicoRESUMEN
The polyimmunoglobulin receptor (pIgR) transcytoses J chain-containing antibodies through mucosal epithelia. In mammals, two cis-duplicates of PIGR, FCMR, and FCAMR, flank the PIGR gene. A PIGR duplication is first found in amphibians, previously annotated as PIGR2 (herein xlFCAMR), and is expressed by APCs. We demonstrate that xlFcamR is the equivalent of mammalian FcamR. It has been assumed that pIgR is the oldest member of this family, yet our data could not distinguish whether PIGR or FCAMR emerged first; however, FCMR was the last family member to emerge. Interestingly, bony fish "pIgR" is not an orthologue of tetrapod pIgR, and possibly acquired its function via convergent evolution. PIGR/FCAMR/FCMR are members of a larger superfamily, including TREM, CD300, and NKp44, which we name the "double-disulfide Ig superfamily" (ddIgSF). Domains related to each ddIgSF family were identified in cartilaginous fish (sharks, chimeras) and encoded in a single gene cluster syntenic to the human pIgR locus. Thus, the ddIgSF families date back to the earliest antibody-based adaptive immunity, but apparently not before. Finally, our data strongly suggest that the J chain arose in evolution only for Ig multimerization. This study provides a framework for further studies of pIgR and the ddIgSF in vertebrates.
Asunto(s)
Antígenos CD/genética , Inmunidad Mucosa/inmunología , Receptores Fc/genética , Receptores Opioides mu/genética , Receptores de Inmunoglobulina Polimérica/genética , Transcitosis/inmunología , Animales , Antígenos CD/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Humanos , Inmunoglobulinas/metabolismo , Filogenia , Transporte de Proteínas/fisiología , Receptores Fc/inmunología , Receptores Opioides mu/inmunología , Receptores de Inmunoglobulina Polimérica/inmunología , Transcitosis/genética , Xenopus laevisRESUMEN
Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes.
Asunto(s)
Memoria Inmunológica , Células Asesinas Naturales/fisiología , Vacunación , Inmunidad Adaptativa , Animales , Humanos , Inmunidad InnataRESUMEN
Two populations of dendritic cells (DCs) are found in mammals, one derived from hematopoietic precursors (conventional/cDC), and another derived from mesenchymal precursors, the follicular DC (FDC); the latter is specialized for antigen presentation to B cells, and has only been definitively demonstrated in mammals. Both cDC and FDC are necessary for induction of germinal centers (GC) and GC-dependent class switch recombination (CSR) and somatic hypermutation (SHM). We demonstrate that in Xenopus, an amphibian in which immunoglobulin CSR and SHM occur without GC formation, a single type of DC has properties of both cDC and FDC, including high expression of MHC class II for the former and display of native antigen at the cell surface for the latter. Our data confirm that the advent of FDC functionality preceded emergence of bona fide FDC, which was in turn crucial for the development of GC formation and efficient affinity maturation in mammals.
Asunto(s)
Presentación de Antígeno , Linfocitos B/inmunología , Células Dendríticas/inmunología , Xenopus laevis/inmunología , Animales , Células Dendríticas/clasificación , Células Dendríticas Foliculares/clasificación , Células Dendríticas Foliculares/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Cambio de Clase de Inmunoglobulina , Mamíferos/genética , Mamíferos/inmunología , Hipermutación Somática de Inmunoglobulina , Especificidad de la Especie , Bazo/citología , Bazo/inmunología , Linfocitos T/inmunología , Xenopus laevis/genéticaRESUMEN
For effective adaptive immunity to foreign antigens (Ag), secondary lymphoid organs (SLO) provide the confined environment in which Ag-restricted lymphocytes, with very low precursor frequencies, interact with Ag on Ag-presenting cells (APC). The spleen is the primordial SLO, arising in conjunction with adaptive immunity in early jawed vertebrates. The spleen, especially the spleen's lymphoid compartment, the white pulp (WP), has undergone numerous modifications over evolutionary time. We describe the progressive advancement of splenic WP complexity, which evolved in parallel with the increasing functionality of adaptive immunity. The Ag-presenting function of follicular dendritic cells (FDC) also likely emerged at the inception of adaptive immunity, and we propose that a single type of hematopoietically derived APC displayed Ag to both T and B cells. A dedicated FDC, derived from a vascular precursor, is a recent evolutionary innovation that likely permitted the robust affinity maturation found in mammals.
Asunto(s)
Evolución Biológica , Tejido Linfoide/embriología , Animales , Humanos , Modelos Biológicos , Vertebrados/embriologíaRESUMEN
In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these "primitive" organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.
Asunto(s)
Evolución Biológica , Inmunidad Celular , Inmunidad Innata , Células Mieloides/inmunología , Animales , MamíferosRESUMEN
Five-year survival rates for patients diagnosed with metastatic melanoma are less than 5%. Adoptive cell transfer (ACT) has achieved an objective response of 50% by Response Evaluation Criteria in Solid Tumors (RECIST) in this patient population. For ACT to be maximally effective, the host must first be lymphodepleted. It is hypothesized that lymphodepletion may remove regulatory elements and cytokine sinks, or increase the activation and availability of antigen presenting cells (APCs). We use an in vivo model to study the ACT of tumor-associated antigen (TAA)-specific CD4+ T cells (TRP-1 cells). We have discovered that depletion of NK1.1+ cells enhances the rejection of established melanoma tumors by adoptively transferred TRP-1 CD4+ T cells. NK1.1+ cell depletion increases the number of CD4+ T cells, the serum concentration of pro-inflammatory cytokines, autoimmune vitiligo, host survival and prevented recurrence after ACT. Because multiple cells express NK1.1, we targeted different NK1.1+ cell populations using antibodies specific for NK cells, pre-mNK cells, and innate lymphoid cells (ILCs). Our data suggests that NK1.1+B220+ pre-mNK cells (also known as interferon-producing killer dendritic cells; IKDCs) are an important inhibitor of the CD4+ T cell response to melanoma. Understanding this mechanism may help design new immunotherapies to modulate the activity of pre-mNKs in the face of an antitumor immune response and inhibit their suppression of adoptively transferred T cells.
RESUMEN
Secondary lymphoid organs (SLO) provide the structural framework for coconcentration of Ag and Ag-specific lymphocytes required for an efficient adaptive immune system. The spleen is the primordial SLO, and evolved concurrently with Ig/TCR:pMHC-based adaptive immunity. The earliest cellular/histological event in the ontogeny of the spleen's lymphoid architecture, the white pulp (WP), is the accumulation of B cells around splenic vasculature, an evolutionarily conserved feature since the spleen's emergence in early jawed vertebrates such as sharks. In mammals, B cells are indispensable for both formation and maintenance of SLO microarchitecture; their expression of lymphotoxin α1ß2 (LTα1ß2) is required for the LTα1ß2:CXCL13 positive feedback loop without which SLO cannot properly form. Despite the spleen's central role in the evolution of adaptive immunity, neither the initiating event nor the B cell subset necessary for WP formation has been identified. We therefore sought to identify both in mouse. We detected CXCL13 protein in late embryonic splenic vasculature, and its expression was TNF-α and RAG-2 independent. A substantial influx of CXCR5(+) transitional B cells into the spleen occurred 18 h before birth. However, these late embryonic B cells were unresponsive to CXCL13 (although responsive to CXCL12) and phenotypically indistinguishable from blood-derived B cells. Only after birth did B cells acquire CXCL13 responsiveness, accumulate around splenic vasculature, and establish the uniquely splenic B cell compartment, enriched for CXCL13-responsive late transitional cells. Thus, CXCL13 is the initiating component of the CXCL13:LTα1ß2 positive feedback loop required for WP ontogeny, and CXCL13-responsive late transitional B cells are the initiating subset.
Asunto(s)
Linfocitos B/inmunología , Quimiocina CXCL13/inmunología , Receptores CXCR5/inmunología , Bazo/inmunología , Animales , Animales Recién Nacidos , Linfocitos B/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Retroalimentación Fisiológica , Femenino , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Heterotrímero de Linfotoxina alfa1 y beta2/inmunología , Heterotrímero de Linfotoxina alfa1 y beta2/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Receptores CXCR5/genética , Receptores CXCR5/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/irrigación sanguínea , Bazo/embriología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Studies using inbred strains of mice have been invaluable for identifying alleles that adversely affect hearing. However, the efficacy of those studies is limited by the phenotypes that these strains express and the alleles that they segregate. Here, by selectively breeding phenotypically and genetically heterogeneous NIH Swiss mice, we generated two lines-the all-frequency hearing loss (AFHL) line and the high-frequency hearing loss (HFHL) line-with differential hearing loss. The AFHL line exhibited characteristics typical of severe, early-onset, sensorineural hearing impairment. In contrast, the HFHL line expressed a novel early-onset, mildly progressive, and frequency-specific sensorineural hearing loss. By quantitative trait loci (QTLs) analyses in these two lines, we identified QTLs on chromosomes 7, 8, and 10 that significantly affected hearing function. The loci on chromosomes 7 and 8 (Hfhl1 and Hfhl2, respectively) are novel and appear to adversely affect only high frequencies (≥30 kHz). Mice homozygous for NIH Swiss alleles at either Hfhl1 or Hfhl2 have 32-kHz auditory-evoked brain stem response thresholds that are 8-14 dB SPL higher than the corresponding heterozygotes. DNA sequence analyses suggest that both the Cdh23(ahl) and Gipc3(ahl5) variants contribute to the chromosome 10 QTL detected in the AFHL line. The frequency-specific hearing loss indicates that the Hfhl1 and Hfhl2 alleles may affect tonotopic development. In addition, dissecting the underlying complex genetics of high-frequency hearing loss may prove relevant in identifying less severe and common forms of hearing impairment in the human population.
Asunto(s)
Pérdida Auditiva de Alta Frecuencia/genética , Pérdida Auditiva Sensorineural/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Cadherinas/genética , Proteínas Portadoras/genética , Cóclea/patología , Potenciales Evocados Auditivos del Tronco Encefálico , Prueba de Complementación Genética , Pérdida Auditiva de Alta Frecuencia/patología , Pérdida Auditiva Sensorineural/patología , Escala de Lod , Ratones , Ratones Endogámicos C3H , Neuropéptidos/genética , Emisiones Otoacústicas Espontáneas , Sitios de Carácter CuantitativoRESUMEN
Sensorineural hearing loss affects the quality of life and communication of millions of people, but the underlying molecular mechanisms remain elusive. Here, we identify mutations in Gipc3 underlying progressive sensorineural hearing loss (age-related hearing loss 5, ahl5) and audiogenic seizures (juvenile audiogenic monogenic seizure 1, jams1) in mice and autosomal recessive deafness DFNB15 and DFNB95 in humans. Gipc3 localizes to inner ear sensory hair cells and spiral ganglion. A missense mutation in the PDZ domain has an attenuating effect on mechanotransduction and the acquisition of mature inner hair cell potassium currents. Magnitude and temporal progression of wave I amplitude of afferent neurons correlate with susceptibility and resistance to audiogenic seizures. The Gipc3(343A) allele disrupts the structure of the stereocilia bundle and affects long-term function of auditory hair cells and spiral ganglion neurons. Our study suggests a pivotal role of Gipc3 in acoustic signal acquisition and propagation in cochlear hair cells.
Asunto(s)
Proteínas Portadoras/genética , Predisposición Genética a la Enfermedad/genética , Pérdida Auditiva Sensorineural/genética , Mecanotransducción Celular/genética , Estimulación Acústica , Proteínas Adaptadoras Transductoras de Señales , Análisis de Varianza , Animales , Cruzamientos Genéticos , Análisis Mutacional de ADN , Células Ciliadas Auditivas/metabolismo , Pruebas Auditivas , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Transgénicos , Mutación Missense/genéticaRESUMEN
Progressive sensorineural hearing loss in humans is a common and debilitating impairment. Sensorineural deafness in inbred strains of mice is a similarly common and genetically diverse phenotype providing experimental models to study the underlying genetics and the biological effects of the risk factors. Here, we report that ALR/LtJ mice develop early-onset profound sensorineural hearing loss as evidenced by high-to-low frequency hearing threshold shifts, absent distortion-product otoacoustic emissions, and normal endocochlear potentials. Linkage analyses of a segregating backcross revealed three novel quantitative trait loci named sensorineural hearing loss (Snhl) -2, -3, and -4. The QTLs achieved very high LOD scores with markers on chromosome 1 (Snhl2, LOD: 12), chromosome 6 (Snhl3, LOD: 24) and chromosome 10 (Snhl4, LOD: 11). Together, they explained 90% of the phenotypic variance. While Snhl2 and Snhl3 affected hearing thresholds across a broad range of test frequencies, Snhl4 caused primarily high-frequency hearing loss. The hearing impairment is accompanied by an organ of Corti patterning defect that is characterized by the ectopic expression of supernumerary outer hair cells organized in rows along the abneural site of the sensory epithelium in the presence of unaltered planar polarity and otherwise normal cochlear duct morphology. Cloning the Snhl2, -3, and -4 genes in the ALR/LtJ mice may provide important genetic and mechanistic insights into the pathology of human progressive sensorineural deafness.
Asunto(s)
Pérdida Auditiva Sensorineural/genética , Herencia Multifactorial , Órgano Espiral/fisiología , Sitios de Carácter Cuantitativo , Alelos , Animales , Mapeo Cromosómico , Conducto Coclear/metabolismo , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Células Ciliadas Auditivas Externas/metabolismo , Humanos , Escala de Lod , Ratones , Ratones Endogámicos C3H , Modelos Genéticos , FenotipoRESUMEN
Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans approximately 4 Megabases located at position 54-60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains.
Asunto(s)
Pérdida Auditiva Sensorineural/genética , Animales , Cromosomas Humanos Par 10/genética , Cóclea/metabolismo , Oído Interno/metabolismo , Potenciales Evocados Auditivos/genética , Genotipo , Humanos , Ratones , Fenotipo , Sitios de Carácter Cuantitativo , Análisis de RegresiónRESUMEN
We have produced a transgenic mouse (PV1TgL) that can only generate B lymphocytes with an Ig receptor specific for the synthetic polymer polyvinyl pyrrolidinone. Before immunization, bone marrow B cell numbers are very low, and peripheral lymphoid organs are almost devoid of B cells, confirming the role of positive selection by Ag in the development of mature B cell populations. The predominant population of B cells in the spleens of naive adult PV1TgL mice have most of the characteristics of marginal zone B cells, including anatomical location in the peripheral areas of the splenic white pulp. After immunization, a new population of B cells appears in the spleen with the characteristics of B-1 cells. Similar cells also appear somewhat later in the peritoneal cavity. Our findings suggest that immunization with a thymus-independent Ag can lead to the appearance and expansion of Ag-reactive B-1 cells in an adult mouse.