RESUMEN
Secondary infections contribute significantly to covid-19 mortality but driving factors remain poorly understood. Autopsies of 20 covid-19 cases and 14 controls from the first pandemic wave complemented with microbial cultivation and RNA-seq from lung tissues enabled description of major organ pathologies and specification of secondary infections. Lethal covid-19 segregated into two main death causes with either dominant diffuse alveolar damage (DAD) or secondary pneumonias. The lung microbiome in covid-19 showed a reduced biodiversity and increased prototypical bacterial and fungal pathogens in cases of secondary pneumonias. RNA-seq distinctly mirrored death causes and stratified DAD cases into subgroups with differing cellular compositions identifying myeloid cells, macrophages and complement C1q as strong separating factors suggesting a pathophysiological link. Together with a prominent induction of inhibitory immune-checkpoints our study highlights profound alterations of the lung immunity in covid-19 wherein a reduced antimicrobial defense likely drives development of secondary infections on top of SARS-CoV-2 infection.
RESUMEN
The nonribosomal enterotoxin tilivalline was the first naturally occurring pyrrolobenzodiazepine to be linked to disease in the human intestine. Since the producing organism Klebsiella oxytoca is part of the intestinal microbiota and the pyrrolobenzodiazepine causes the pathogenesis of colitis it is important to understand the biosynthesis and regulation of tilivalline activity. Here we report the biosynthesis of tilivalline and show that this nonribosomal peptide assembly pathway initially generates tilimycin, a simple pyrrolobenzodiazepine with cytotoxic properties. Tilivalline results from the non-enzymatic spontaneous reaction of tilimycin with biogenetically generated indole. Through a chemical total synthesis of tilimycin we could corroborate the predictions made about the biosynthesis. Production of two cytotoxic pyrrolobenzodiazepines with distinct functionalities by human gut resident Klebsiella oxytoca has important implications for intestinal disease.