RESUMEN
Low-grade serous ovarian carcinoma (LGSC) is a rare and lethal subtype of ovarian cancer. LGSC is pathologically, biologically, and clinically distinct from the more common high-grade serous ovarian carcinoma (HGSC). LGSC arises from serous borderline ovarian tumours (SBTs). The mechanism of transformation for SBTs to LGSC remains poorly understood. To better understand the biology of LGSC, we performed whole proteome profiling of formalin-fixed, paraffin-embedded tissue blocks of LGSC (n = 11), HGSC (n = 19), and SBTs (n = 26). We identified that the whole proteome is able to distinguish between histotypes of the ovarian epithelial tumours. Proteins associated with the tumour microenvironment were differentially expressed between LGSC and SBTs. Fibroblast activation protein (FAP), a protein expressed in cancer-associated fibroblasts, is the most differentially abundant protein in LGSC compared with SBT. Multiplex immunohistochemistry (IHC) for immune markers (CD20, CD79a, CD3, CD8, and CD68) was performed to determine the presence of B cells, T cells, and macrophages. The LGSC FAP+ stroma was associated with greater abundance of Tregs and M2 macrophages, features not present in SBTs. Our proteomics cohort reveals that there are changes in the tumour microenvironment in LGSC compared with its putative precursor lesion, SBT. These changes suggest that the tumour microenvironment provides a supportive environment for LGSC tumourigenesis and progression. Thus, targeting the tumour microenvironment of LGSC may be a viable therapeutic strategy. © 2024 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/genética , Cistadenocarcinoma Seroso/patología , Cistadenocarcinoma Seroso/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Clasificación del Tumor , Progresión de la Enfermedad , Proteómica/métodos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Persona de Mediana Edad , Proteínas de la Membrana/metabolismo , Gelatinasas/metabolismo , Anciano , Endopeptidasas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Linfocitos Infiltrantes de Tumor/metabolismoRESUMEN
Proteome coverage and accurate protein quantification are both important for evaluating biological systems; however, compromises between quantification, coverage, and mass spectrometry (MS) resources are often necessary. Consequently, experimental parameters that impact coverage and quantification must be adjusted, depending on experimental goals. Among these parameters is offline prefractionation, which is utilized in MS-based proteomics to decrease sample complexity resulting in higher overall proteome coverage upon MS analysis. Prefractionation leads to increases in required MS analysis time, although this is often mitigated by isobaric labeling using tandem-mass tags (TMT), which allow samples to be multiplexed. Here we evaluate common prefractionation schemes, TMT variants, and MS acquisition methods and their impact on protein quantification and coverage. Furthermore, we provide recommendations for experimental design depending on the experimental goals.
Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Proteómica/normas , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis , Humanos , Fraccionamiento Químico/métodos , Coloración y Etiquetado/métodosRESUMEN
Mechanisms that regulate cell survival and proliferation are important for both the development and homeostasis of normal tissue, and as well as for the emergence and expansion of malignant cell populations. Caspase-3 (CASP3) has long been recognized for its proteolytic role in orchestrating cell death-initiated pathways and related processes; however, whether CASP3 has other functions in mammalian cells that do not depend on its known catalytic activity have remained unknown. To investigate this possibility, we examined the biological and molecular consequences of reducing CASP3 levels in normal and transformed human cells using lentiviral-mediated short hairpin-based knockdown experiments in combination with approaches designed to test the potential rescue capability of different components of the CASP3 protein. The results showed that a ≥50% reduction in CASP3 levels rapidly and consistently arrested cell cycle progression and survival in all cell types tested. Mass spectrometry-based proteomic analyses and more specific flow cytometric measurements strongly implicated CASP3 as playing an essential role in regulating intracellular protein aggregate clearance. Intriguingly, the rescue experiments utilizing different forms of the CASP3 protein showed its prosurvival function and effective removal of protein aggregates did not require its well-known catalytic capability, and pinpointed the N-terminal prodomain of CASP3 as the exclusive component needed in a diversity of human cell types. These findings identify a new mechanism that regulates human cell survival and proliferation and thus expands the complexity of how these processes can be controlled. The graphical abstract illustrates the critical role of CASP3 for sustained proliferation and survival of human cells through the clearance of protein aggregates.
RESUMEN
The t(X,17) chromosomal translocation, generating the ASPSCR1::TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCCs), frustrating efforts to identify therapeutic targets for these rare cancers. Here, proteomic analysis identifies VCP/p97, an AAA+ ATPase with known segregase function, as strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1::TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1::TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributes with ASPSCR1::TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrate the oncogenic transcriptional signature of ASPSCR1::TFE3, by facilitating assembly of higher-order chromatin conformation structures demonstrated by HiChIP. Finally, ASPSCR1::TFE3 and VCP demonstrate co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Proteómica , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Translocación Genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Neoplasias Renales/genética , Cromatina/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cromosomas Humanos X/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína que Contiene Valosina/genéticaRESUMEN
BACKGROUND: Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. METHODS: Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. RESULTS: Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. CONCLUSION: These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.
Asunto(s)
Antígenos CD , Mastocitos , Ratones , Animales , Antígenos CD/metabolismo , Proteómica , Ratones Transgénicos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Inmunoglobulina E/metabolismoRESUMEN
PURPOSE: Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN: This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS: The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS: Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.
Asunto(s)
Neoplasias Óseas , Sarcoma de Ewing , Sarcoma , Niño , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Proteínas de la Membrana , Proteoma , Proteómica , Neoplasias Óseas/genética , Neoplasias Óseas/terapia , Inmunoterapia , Antígenos de Neoplasias , OxidorreductasasRESUMEN
The t(X,17) chromosomal translocation, generating the ASPSCR1-TFE3 fusion oncoprotein, is the singular genetic driver of alveolar soft part sarcoma (ASPS) and some Xp11-rearranged renal cell carcinomas (RCC), frustrating efforts to identify therapeutic targets for these rare cancers. Proteomic analysis showed that VCP/p97, an AAA+ ATPase with known segregase function, was strongly enriched in co-immunoprecipitated nuclear complexes with ASPSCR1-TFE3. We demonstrate that VCP is a likely obligate co-factor of ASPSCR1-TFE3, one of the only such fusion oncoprotein co-factors identified in cancer biology. Specifically, VCP co-distributed with ASPSCR1-TFE3 across chromatin in association with enhancers genome-wide. VCP presence, its hexameric assembly, and its enzymatic function orchestrated the oncogenic transcriptional signature of ASPSCR1-TFE3, by facilitating assembly of higher-order chromatin conformation structures as demonstrated by HiChIP. Finally, ASPSCR1-TFE3 and VCP demonstrated co-dependence for cancer cell proliferation and tumorigenesis in vitro and in ASPS and RCC mouse models, underscoring VCP's potential as a novel therapeutic target.
RESUMEN
The adsorbed protein layer on an implanted biomaterial surface is known to mediate downstream cell-material interactions that drive the host response. While the adsorption of plasma-derived proteins has been studied extensively, the adsorption of damage-associated molecular patterns (DAMPs) derived from damaged cells and matrix surrounding the implant remains poorly understood. Previously, our group developed a DAMP-adsorption model in which 3T3 fibroblast lysates were used as a complex source of cell-derived DAMPs and we demonstrated that biomaterials with adsorbed lysate potently activated RAW-Blue macrophages via Toll-like receptor 2 (TLR2). In the present study, we characterized the response of mouse bone marrow derived macrophages (BMDM) from wildtype (WT), TLR2-/- and MyD88-/- mice on Teflon™ AF surfaces pre-adsorbed with 10% plasma or lysate-spiked plasma (10% w/w total protein from 3T3 fibroblast lysate) for 24 hours. WT BMDM cultured on adsorbates derived from 10% lysate in plasma had significantly higher gene and protein expression of IL-1ß, IL-6, TNF-α, IL-10, RANTES/CCL5 and CXCL1/KC, compared to 10% plasma-adsorbed surfaces. Furthermore, the upregulation of pro-inflammatory cytokine and chemokine expression in the 10% lysate in plasma condition was attenuated in TLR2-/- and MyD88-/- BMDM. Proteomic analysis of the adsorbed protein layers showed that even this relatively small addition of lysate-derived proteins within plasma (10% w/w) caused a significant change to the adsorbed protein profile. The 10% plasma condition had fibrinogen, albumin, apolipoproteins, complement, and fibronectin among the top 25 most abundant proteins. While proteins layers generated from 10% lysate in plasma retained fibrinogen and fibronectin among the top 25 proteins, there was a disproportionate increase in intracellular proteins, including histones, tubulins, actins, and vimentin. Furthermore, we identified 7 DAMPs or DAMP-related proteins enriched in the 10% plasma condition (fibrinogen, apolipoproteins), compared to 39 DAMPs enriched in the 10% lysate in plasma condition, including high mobility group box 1 and histones. Together, these findings indicate that DAMPs and other intracellular proteins readily adsorb to biomaterial surfaces in competition with plasma proteins, and that adsorbed DAMPs induce an inflammatory response in adherent macrophages that is mediated by the MyD88-dependent TLR2 signaling pathway.
Asunto(s)
Activación de Macrófagos , Factor 88 de Diferenciación Mieloide , Receptor Toll-Like 2 , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales , Fibrinógeno , Fibronectinas , Hemostáticos , Histonas , Factor 88 de Diferenciación Mieloide/genética , Proteómica , Transducción de Señal , Receptor Toll-Like 2/genéticaRESUMEN
Targeted and semitargeted mass spectrometry-based approaches are reliable methods to consistently detect and quantify low abundance proteins including proteins of clinical significance. Despite their potential, the development of targeted and semitargeted assays is time-consuming and often requires the purchase of costly libraries of synthetic peptides. To improve the efficiency of this rate-limiting step, we developed PeptideRanger, a tool to identify peptides from protein of interest with physiochemical properties that make them more likely to be suitable for mass spectrometry analysis. PeptideRanger is a flexible, extensively annotated, and intuitive R package that uses a random forest model trained on a diverse data set of thousands of MS experiments spanning a variety of sample types profiled with different chromatography setups and instruments. To support a variety of applications and to leverage rapidly growing public MS databases, PeptideRanger can readily be retrained with experiment-specific data sets and customized to prioritize and filter peptides based on selected properties.
Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Péptidos/análisis , Espectrometría de Masas/métodos , ProteínasRESUMEN
Background: Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods: In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results: We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions: Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
RESUMEN
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events.
Asunto(s)
Adenocarcinoma , Neoplasias de los Conductos Biliares , Carcinoma Ductal Pancreático , Colangiocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patología , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Carcinoma Ductal Pancreático/patología , Colangiocarcinoma/genética , Humanos , Mutación , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Transcripción/genética , Neoplasias PancreáticasRESUMEN
Clear cell ovarian carcinoma (CCOC) is the second most common subtype of epithelial ovarian carcinoma. Late-stage CCOC is not responsive to gold-standard chemotherapy and results in suboptimal outcomes for patients. In-depth molecular insight is urgently needed to stratify the disease and drive therapeutic development. We conducted global proteomics for 192 cases of CCOC and compared these with other epithelial ovarian carcinoma subtypes. Our results showed distinct proteomic differences in CCOC compared with other epithelial ovarian cancer subtypes including alterations in lipid and purine metabolism pathways. Furthermore, we report potential clinically significant proteomic subgroups within CCOC, suggesting the biologic plausibility of stratified treatment for this cancer. Taken together, our results provide a comprehensive understanding of the CCOC proteomic landscape to facilitate future understanding and research of this disease. © 2022 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Adenocarcinoma de Células Claras , Neoplasias Ováricas , Femenino , Humanos , Carcinoma Epitelial de Ovario/patología , Proteoma , Proteómica , Adenocarcinoma de Células Claras/patología , Neoplasias Ováricas/metabolismoRESUMEN
Immunomodulation of mast cell (MC) activity is warranted in allergic and inflammatory diseases where MCs have a central role in pathogenesis. Targeting Siglec-8, an inhibitory receptor on MCs and eosinophils, has shown promising activity in preclinical and clinical studies. While the intracellular pathways that regulate Siglec-8 activity in eosinophils have been well studied, the signaling mechanisms that lead to MC inhibition have not been fully elucidated. Here, we evaluate the intracellular signaling pathways of Siglec-8-mediated inhibition in primary MCs using an anti-Siglec-8 monoclonal antibody (mAb). Phospho-proteomic profiling of FcεRI-activated MCs revealed Siglec-8 mAb-treatment globally inhibited proximal and downstream kinases, leading to attenuated MC activation and degranulation. In fact, Siglec-8 was found to directly interact with FcεRI signaling molecules. Siglec-8 inhibition was dependent on both cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that interact with the SH2 containing protein phosphatase Shp-2 upon Siglec-8 phosphorylation. Taken together, these data support a model in which Siglec-8 regulates proximal FcεRI-induced phosphorylation events through phosphatase recruitment and interaction with FcεRIγ, resulting in global inhibition of MCs upon Siglec-8 mAb engagement.
Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Lectinas/metabolismo , Mastocitos/inmunología , Receptores de IgE/metabolismo , Animales , Degranulación de la Célula , Humanos , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteómica , Transducción de SeñalRESUMEN
Despite advances in genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein level information. Formalin-fixed paraffin-embedded (FFPE) tissue specimens with extended clinical outcomes are widely available. Here, we perform comprehensive proteomic profiling of 300 FFPE breast cancer surgical specimens, 75 of each PAM50 subtype, from patients diagnosed in 2008-2013 (n = 178) and 1986-1992 (n = 122) with linked clinical outcomes. These two cohorts are analyzed separately, and we quantify 4214 proteins across all 300 samples. Within the aggressive PAM50-classified basal-like cases, proteomic profiling reveals two groups with one having characteristic immune hot expression features and highly favorable survival. Her2-Enriched cases separate into heterogeneous groups differing by extracellular matrix, lipid metabolism, and immune-response features. Within 88 triple-negative breast cancers, four proteomic clusters display features of basal-immune hot, basal-immune cold, mesenchymal, and luminal with disparate survival outcomes. Our proteomic analysis characterizes the heterogeneity of breast cancer in a clinically-applicable manner, identifies potential biomarkers and therapeutic targets, and provides a resource for clinical breast cancer classification.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteoma/metabolismo , Neoplasias de la Mama Triple Negativas/clasificación , Neoplasias de la Mama Triple Negativas/patología , Mama/patología , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteómica , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/mortalidadRESUMEN
Breast cancer heterogeneity has made it challenging to identify mechanisms critical to the initial stages of their genesis in vivo. Here, we sought to interrogate the role of YB-1 in newly arising human breast cancers as well as in established cell lines. In a first series of experiments, we found that short-hairpin RNA-mediated knockdown of YB-1 in MDA-MB-231 cells blocked both their local tumour-forming and lung-colonising activity in immunodeficient mice. Conversely, upregulated expression of YB-1 enhanced the poor in vivo tumorigenicity of T47D cells. We then found that YB-1 knockdown also inhibits the initial generation in mice of invasive ductal carcinomas and ductal carcinomas in situ from freshly isolated human mammary cells transduced, respectively, with KRASG12D or myristoylated-AKT1. Interestingly, increased expression of HIF1α and G3BP1, two YB-1 translational targets and elements of a stress-adaptive programme, mirrored the levels of YB-1 in both transformed primary and established MDA-MB-231 breast cancer cells.
Asunto(s)
Neoplasias de la Mama , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , ADN Helicasas/metabolismo , Femenino , Humanos , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismoRESUMEN
PURPOSE: International consensus and the 2021 WHO classification recognize eight molecular subgroups among non-WNT/non-SHH (Group 3/4) medulloblastoma, representing approximately 60% of tumors. However, very few clinical centers worldwide possess the technical capabilities to determine DNA methylation profiles or other molecular parameters of high risk for group 3/4 tumors. As a result, biomarker-driven risk stratification and therapy assignment constitutes a major challenge in medulloblastoma research. Here, we identify an IHC marker as a clinically tractable method for improved medulloblastoma risk stratification. EXPERIMENTAL DESIGN: We bioinformatically analyzed published medulloblastoma transcriptomes and proteomes identifying as a potential biomarker TPD52, whose IHC prognostic value was validated across three group 3/4 medulloblastoma clinical cohorts (n = 387) treated with conventional therapies. RESULTS: TPD52 IHC positivity represented a significant independent predictor of early relapse and death for group 3/4 medulloblastoma [HRs between 3.67 and 26.7; 95% confidence interval (CI) between 1.00 and 706.23; P = 0.05, 0.017, and 0.0058]. Cross-validated survival models incorporating TPD52 IHC with clinical features outperformed existing state-of-the-art risk stratification schemes, and reclassified approximately 50% of patients into more appropriate risk categories. Finally, TPD52 immunopositivity was a predictive indicator of poor response to chemotherapy [HR, 12.66; 95% CI, 3.53-45.40; P < 0.0001], suggesting important implication for therapeutic choices. CONCLUSIONS: This study redefines the approach to risk stratification in group 3/4 medulloblastoma in global practice. Because integration of TPD52 IHC in classification algorithms significantly improved outcome prediction, this test could be rapidly adopted for risk stratification on a global scale, independently of advanced but technically challenging molecular profiling techniques.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/diagnóstico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/terapia , Humanos , Inmunohistoquímica , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/terapia , Proteínas de Neoplasias , Pronóstico , Factores de TranscripciónRESUMEN
Sex is a modulator of health that has been historically overlooked in biomedical research. Recognizing this knowledge gap, funding agencies now mandate the inclusion of sex as a biological variable with the goal of stimulating efforts to illuminate the molecular underpinnings of sex biases in health and disease. DNA methylation (DNAm) is a strong molecular candidate for mediating such sex biases; however, a robust and well characterized annotation of sex differences in DNAm is yet to emerge. Beginning with a large (n = 3795) dataset of DNAm profiles from normative adult whole blood samples, we identified, validated and characterized autosomal sex-associated co-methylated genomic regions (sCMRs). Strikingly, sCMRs showed consistent sex differences in DNAm over the life course and a subset were also consistent across cell, tissue and cancer types. sCMRs included sites with known sex differences in DNAm and links to health conditions with sex biased effects. The robustness of sCMRs enabled the generation of an autosomal DNAm-based predictor of sex with 96% accuracy. Testing this tool on blood DNAm profiles from individuals with sex chromosome aneuploidies (Klinefelter [47,XXY], Turner [45,X] and 47,XXX syndrome) revealed an intimate relationship between sex chromosomes and sex-biased autosomal DNAm.
Asunto(s)
Metilación de ADN , Trastornos de los Cromosomas Sexuales del Desarrollo Sexual/genética , Procesos de Determinación del Sexo/genética , Cromosomas/genética , Islas de CpG , Femenino , Humanos , MasculinoRESUMEN
Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.
Asunto(s)
Anoicis , Proteína Accesoria del Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Línea Celular Tumoral , Niño , Humanos , Proteómica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologíaRESUMEN
Uncovering the mechanisms that underpin how tumor cells adapt to microenvironmental stress is essential to better understand cancer progression. The HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase) gene is a tumor suppressor that inhibits the growth, invasive capacity, and metastasis of cancer cells. However, the direct regulatory pathways whereby HACE1 confers this tumor-suppressive effect remain to be fully elucidated. In this report, we establish a link between HACE1 and the major stress factor, hypoxia-inducible factor 1 alpha (HIF1α). We find that HACE1 blocks the accumulation of HIF1α during cellular hypoxia through decreased protein stability. This property is dependent on HACE1 E3 ligase activity and loss of Ras-related C3 botulinum toxin substrate 1 (RAC1), an established target of HACE1 mediated ubiquitinylation and degradation. In vivo, genetic deletion of Rac1 reversed the increased HIF1α expression observed in Hace1-/- mice in murine KRasG12D-driven lung tumors. An inverse relationship was observed between HACE1 and HIF1α levels in tumors compared to patient-matched normal kidney tissues, highlighting the potential pathophysiological significance of our findings. Together, our data uncover a previously unrecognized function for the HACE1 tumor suppressor in blocking HIF1α accumulation under hypoxia in a RAC1-dependent manner.
Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/genética , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteína de Unión al GTP rac1/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Metástasis de la Neoplasia , Estabilidad Proteica , Transducción de Señal/genética , Hipoxia Tumoral/genética , Ubiquitinación/genéticaRESUMEN
Mesonephric carcinomas (MEs) and female adnexal tumors of probable Wolffian origin (FATWO) are derived from embryologic remnants of Wolffian/mesonephric ducts. Mesonephric-like carcinomas (MLCs) show identical morphology to ME of the cervix but occur in the uterus and ovary without convincing mesonephric remnants. ME, MLC, and FATWO are challenging to diagnose due to their morphologic similarities to Müllerian/paramesonephric tumors, contributing to a lack of evidence-based and tumor-specific treatments. We performed whole-proteomic analysis on 9 ME/MLC and 56 endometrial carcinomas (ECs) to identify potential diagnostic biomarkers. Although there were no convincing differences between ME and MLC, 543 proteins showed increased expression in ME/MLC relative to EC. From these proteins, euchromatic histone lysine methyltransferase 2 (EHMT2), glutathione S-transferase Mu 3 (GSTM3), eukaryotic translation elongation factor 1 alpha 2 (EEF1A2), and glycogen synthase kinase 3 beta were identified as putative biomarkers. Immunohistochemistry was performed on these candidates and GATA3 in 14 ME/MLC, 8 FATWO, 155 EC, and normal tissues. Of the candidates, only GATA3 and EHMT2 were highly expressed in mesonephric remnants and mesonephric-derived male tissues. GATA3 had the highest sensitivity and specificity for ME/MLC versus EC (93% and 99%) but was absent in FATWO. EHMT2 was 100% sensitive for ME/MLC & FATWO but was not specific (65%). Similarly, EEF1A2 was reasonably sensitive to ME/MLC (92%) and FATWO (88%) but was the least specific (38%). GSTM3 performed intermediately (sensitivity for ME/MLC and FATWO: 83% and 38%, respectively; specificity 67%). Although GATA3 remained the best diagnostic biomarker for ME/MLC, we have identified EHMT2, EEF1A2, and GSTM3 as proteins of interest in these cancers. FATWO's cell of origin is uncertain and remains an area for future research.