Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37186990

RESUMEN

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Vitamina K 3/farmacología , Vitamina K 3/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
2.
J Inorg Biochem ; 243: 112166, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36947899

RESUMEN

We have synthesized cis-[Ru(bpy)2(NO2-κN)Ln-](n-1) and cis-[Ru(bpy)2(NO2-κO)L n-](n-1) (bpy = 2,2'-bipyridine; k = indication of the coordinated center to Ruthenium; L = pyridine type ligand) by reacting cis-[Ru(bpy)2(H2O)Ln-](n-2) with sodium nitrite or conducting basic cis-[Ru(bpy)2NO(Ln-)](n-3) hydrolysis. Photolysis at the metal-ligand charge transfer band (MLCT) of the isomers yielded nitric oxide (NO) as determined by NO measurement. The NO photorelease rates obtained upon 447 nm laser irradiation of the ruthenium complexes showed that cis-[Ru(bpy)2(NO2-κO)Ln-](n-1) released NO three times faster than cis-[Ru(bpy)2(NO2-κN)Ln-](n-1). We investigated endothelium-dependent vasodilation induced by cis-[Ru(bpy)2(4-pic)(NO2-κN)]+ and cis-[Ru(bpy)2(4-pic)(NO2-κO)]+ (4-pic = 4-picoline) in isolated 3 mm aortic rings precontracted with L-phenylephrine. Maximum vasodilation was achieved under 447 nm laser irradiation of 0.5 µMol.L-1 ruthenium complexes for 100 s.


Asunto(s)
Rutenio , Vasodilatadores , Isomerismo , Rutenio/farmacología , Rutenio/química , Óxido Nítrico , Ligandos , Dióxido de Nitrógeno
3.
Front Mol Biosci ; 7: 595830, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511155

RESUMEN

This work presents a new procedure to synthesize ruthenium-phthalocyanine complexes and uses diverse spectroscopic techniques to characterize trans-[RuCl(Pc)DMSO] (I) (Pc = phthalocyanine) and trans-[Ru(Pc)(4-ampy)2] (II) (4-ampy = 4-aminopyridine). The triplet excited-state lifetimes of (I) measured by nanosecond transient absorption showed that two processes occurred, one around 15 ns and the other around 3.8 µs. Axial ligands seemed to affect the singlet oxygen quantum yield. Yields of 0.62 and 0.14 were achieved for (I) and (II), respectively. The lower value obtained for (II) probably resulted from secondary reactions of singlet oxygen in the presence of the ruthenium complex. We also investigate how axial ligands in the ruthenium-phthalocyanine complexes affect their photo-bioactivity in B16F10 murine melanoma cells. In the case of (I) at 1 µmol/L, photosensitization with 5.95 J/cm2 provided B16F10 cell viability of 6%, showing that (I) was more active than (II) at the same concentration. Furthermore, (II) was detected intracellularly in B16F10 cell extracts. The behavior of the evaluated ruthenium-phthalocyanine complexes point to the potential use of (I) as a metal-based drug in clinical therapy. Changes in axial ligands can modulate the photosensitizer activity of the ruthenium phthalocyanine complexes.

4.
J Photochem Photobiol B ; 198: 111564, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31382090

RESUMEN

Light irradiation has been used in clinical therapy for several decades. In this context, photobiomodulation (PBM) modulates signaling pathways via ROS, ATP, Ca2+, while photodynamic therapy (PDT) generates reactive oxygen species by excitation of a photosensitizer. NO generation could be an important tool when combined with both kinds of light therapy. By using a metal-based compound, we found that PBM combined with PDT could be a beneficial cancer treatment option. We used two types of ruthenium compounds, ([Ru(Pc)], Pc = phthalocyanine) and trans-[Ru(NO)(NO2)(Pc)]. The UV-vis spectra of both complexes displayed a band in the 660 nm region. In the case of 0.5 µM trans-[Ru(NO)(NO2)(Pc)], light irradiation at the Q-band reduced the percentage of viable human melanoma (A375) cells to around 50% as compared to [Ru(Pc)]. We hypothesized that these results were due to a synergistic effect between singlet oxygen and nitric oxide. Similar experiments performed with PDT (660 nm) combined with PBM (850 nm) induced more photocytotoxicity using both [Ru(Pc)] and trans-[Ru(NO)(NO2)(Pc)]. This was interpreted as PBM increasing cell metabolism (ATP production) and the consequent higher uptake of the ruthenium phthalocyanine compounds and more efficient apoptosis. The use of metal-based photosensitizers combined with light therapy may represent an advance in the field of photodynamic therapy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Complejos de Coordinación/química , Óxido Nítrico/metabolismo , Compuestos Organometálicos/química , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Humanos , Luz , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...