Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Oleo Sci ; 70(3): 321-332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33658465

RESUMEN

Oils play a key role as raw materials in a variety of industries. The aim of this study was to evaluate the potential of Datura innoxia seed oil cultivated in Saudi Arabia for industrial purpose and to study the effects of hexane, chloroform, and isopropanol as extraction solvents on the compositions of the extracts. The results showed that the hexane and chloroform extracts were mainly neutral oils which were rich in linoleic (≈46%) and oleic (≈31%) acids. However, the isopropanol extract contained large amount of neutral oil and organic acids. Neutral oil contained mainly palmitic acid (40.2%) and some important and valuable epoxy (15.4%) and cyclopropane (13.2%) fatty acids. Analysis of the sterol and tocopherol levels of the crude and purified oil extracted revealed that they were significantly affected by the extraction solvent used.


Asunto(s)
Datura/química , Ácidos Grasos/análisis , Extracción Líquido-Líquido/métodos , Extractos Vegetales/química , Aceites de Plantas/química , Semillas/química , Solventes , 2-Propanol , Cloroformo , Hexanos , Fitosteroles/análisis , Extractos Vegetales/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Arabia Saudita , Tocoferoles/análisis
2.
Molecules ; 25(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322600

RESUMEN

In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.


Asunto(s)
Glycine max/metabolismo , Lecitinas/química , Liposomas/química , Escualeno/química , Antioxidantes/química , Química Farmacéutica , Colesterol/química , Estabilidad de Medicamentos , Luz , Membrana Dobles de Lípidos , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Fosfolípidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , Viscosidad , Difracción de Rayos X
3.
Nanomaterials (Basel) ; 10(12)2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-33291386

RESUMEN

This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely ß-sitosterol (ßS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of ßS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either ßS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.

4.
Sci Rep ; 10(1): 15110, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934328

RESUMEN

3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are heat-induced contaminants which form during oil refining process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3-MCPD and GE in fries which also involved high temperature. The content of 3-MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and different concentration of salt (NaCl). The results in our study showed that the effect was in the order of concentration of sodium chloride < frying duration < frying temperature. The content of 3-MCPD esters was significantly increased whereas GE was significantly decreased, when prolong the frying duration. A high temperature results in a high 3-MCPD ester level but a low GE level in fries. The present of salt had contributed significant influence to the generation of 3-MCPD. The soaking of potato chips in salt showed no significant effect on the level of GE during the frying. The oil oxidation tests showed that all the fries were below the safety limit. Hence, the frying cycle, temperature and the added salt to carbohydrate-based food during frying should be monitored.


Asunto(s)
Carcinógenos/análisis , Culinaria/métodos , Ésteres/análisis , Contaminación de Alimentos/análisis , Calor , Aceites de Plantas/química , alfa-Clorhidrina/análisis , Carcinógenos/química , Ésteres/química , Análisis de los Alimentos , Manipulación de Alimentos , Humanos , alfa-Clorhidrina/química
5.
Food Chem ; 328: 127147, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-32497897

RESUMEN

The reduction of the 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) was successfully achieved by the optimization of four processing parameters: phosphoric acid dosage, degumming temperature, bleaching earth dosage, and deodorization temperature by response surface methodology without the need for additional processing steps. The optimized processing conditions were 0.31% phosphoric acid dosage, 50 °C degumming temperature, 3% bleaching earth dosage, and 240 °C deodorization temperature. The optimization resulted in more than 80% and 65% reduction of 3-MCPDE and GE levels, respectively with color and FFA contents maintained in the acceptable range specified by Palm Oil Refiners Association of Malaysia. The optimized refining condition was transferred to macro scale refining units of 1 kg and 3 kg capacities to investigate its successful application during scale-up process.


Asunto(s)
Industria de Procesamiento de Alimentos/métodos , Aceite de Palma/química , alfa-Clorhidrina/química , Color , Compuestos Epoxi/química , Ésteres , Calidad de los Alimentos , Laboratorios , Malasia , Ácidos Fosfóricos/química , Propanoles/química , Temperatura , alfa-Clorhidrina/análisis
6.
Materials (Basel) ; 13(7)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290065

RESUMEN

In the present study, a sequence of experiments was performed to assess the influence of the key process parameters on the formation of a carbon nanofiber-coated monolith (CNFCM), using a four-level factorial design in response surface methodology (RSM). The effect of reaction temperature, hydrocarbon flow rate, catalyst and catalyst promoter were examined using RSM to enhance the formation yield of CNFs on a monolith substrate. To calculate carbon yield, a quadratic polynomial model was modified through multiple regression analysis and the best possible reaction conditions were found as follows: a reaction temperature of 800 °C, furfuryl alcohol flow of 0.08525 mL/min, ferrocene catalyst concentration of 2.21 g. According to the characterization study, the synthesized CNFs showed a high graphitization which were uniformly distributed on a monolith substrate. Besides this, the feasibility of carbon dioxide (CO2) adsorption from the gaseous mixture (N2/CO2) under a range of experimental conditions was investigated at monolithic column. To get the most out of the CO2 capture, an as-prepared sample was post-modified using ammonia. Furthermore, a deactivation model (DM) was introduced for the purpose of studying the breakthrough curves. The CO2 adsorption onto CNFCM was experimentally examined under following operating conditions: a temperature of 30-50 °C, pressure of 1-2 bar, flow rate of 50-90 mL/min, and CO2 feed amount of 10-40 vol.%. A lower adsorption capacity and shorter breakthrough time were detected by escalating the temperature. On the other hand, the capacity for CO2 adsorption increased by raising the CO2 feed amount, feed flow rate, and operating pressure. The comparative evaluation of CO2 uptake over unmodified and modified CNFCM adsorbents confirmed that the introduced modification procedure caused a substantial improvement in CO2 adsorption.

7.
J Oleo Sci ; 69(5): 413-421, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32281562

RESUMEN

Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.


Asunto(s)
Antioxidantes/análisis , Semillas/química , Chalotes/química , Fenómenos Químicos , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Ácido Linoleico/análisis , Ácido Oléico/análisis , Ácido Palmítico/análisis , Fenoles/análisis , Tocotrienoles/análisis
8.
Materials (Basel) ; 13(4)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075216

RESUMEN

The main purpose of this work is to investigate the application options of the char produced from gasification plants. Two promising mesoporous acidic catalysts were synthesized using char as a support material. Two char samples were collected from either a dual-stage or a rising co-current biomass gasification plant. The catalysts produced from both gasification char samples were characterized for their physiochemical and morphological properties using N2 physorption measurement, total acidity evaluation through TPD-NH3, functional groups analysis by FT-IR, and morphology determination via FESEM. Results revealed that the dual-stage char-derived mesoporous catalyst (DSC-SO4) with higher specific surface area and acidic properties provided higher catalytic activity for fatty acid methyl esters (FAME) production from waste cooking oil (WCO) than the mesoporous catalyst obtained from char produced by rising co-current gasification (RCC-SO4). Furthermore, the effects of methanol/oil molar ratio (3:1-15:1), catalyst concentration (1-5 wt.% of oil), and reaction time (30-150 min) were studied while keeping the transesterification temperature constant at 65 °C. The optimal reaction conditions for the transesterification of WCO were 4 wt.% catalyst concentration, 12:1 methanol/oil molar ratio, and 90 min operating time. The optimized reaction conditions resulted in FAME conversions of 97% and 83% over DSC-SO4 and RCC-SO4 catalysts, respectively. The char-based catalysts show excellent reusability, since they could be reused six times without any modification.

9.
RSC Adv ; 10(22): 13302-13315, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35492091

RESUMEN

In the present research, artificial neural network (ANN) modelling was utilized to determine the relative importance of effective variables to achieve optimum specific surface areas of a synthesized catalyst. Initially, carbonaceous nanocrystalline mesoporous NiO core-shell solid sphere composites were produced by applying incomplete carbonized glucose (ICG) as the pore directing agent and polyethylene glycol (PEG; 4000) as the surfactant via a hydrothermal-assisted method. The Brunauer-Emmett-Teller (BET) model was applied to ascertain the textural characteristics of the as-prepared mesoporous NiO catalyst. The effects of several key parameters such as metal ratio, surfactant and template concentrations, and calcination temperature on the prediction of the surface areas of the as-synthesized catalyst were evaluated. In order to verify the optimum hydrothermal fabrication conditions, ANN was trained over five different algorithms (QP, BBP, IBP, LM, and GA). Among five different algorithms, LM-4-7-1 representing 4 nodes in the input layer, 7 nodes in the hidden layer, and 1 node in the output layer was verified as the optimum model due to its optimum numerical properties. According to the modelling study, the calcination temperature demonstrated the most effective parameter, while the ICG concentration indicated the least effect. By verifying the optimum hydrothermal fabrication conditions, the thermal decomposition of ammonium sulphate (TDAS) was applied to the functionalized surface areas and mesoporous walls by -SO3H functional groups. In addition, the catalytic performance and reusability of the produced mesoporous SO3H-NiO catalyst were evaluated via the transesterification of waste cooking palm oil, resulting in a methyl ester content of 97.4% and excellent stability for nine consecutive transesterification reactions without additional treatments.

10.
RSC Adv ; 10(10): 6098-6108, 2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35497451

RESUMEN

The deterioration of the environment due to anthropogenic disturbances has become a major concern to scientists and engineers. This study responds to the concern by developing a novel nanomagnetic carbonaceous solid acid catalyst using empty fruit bunches (EFBs) as a precursor. The EFB was sulphonated to obtain acidic EFBs (AEFBs). The impregnation method was performed to incorporate metal oxides, namely, NiO, MnO and Na2SiO3, on the AEFBs. This process resulted in three nanomagnetic catalysts, namely, Na2SiO3-NiO-MnO/AC, NiO-MnO/AC and NiO/AC. According to X-ray diffraction analysis, the crystal size of the NiO/AC, NiO-MnO/AC and Na2SiO3-NiO-MnO/AC catalysts were 13.87, 28.38 and 39.64 nm, respectively, whereas their Brunauer-Emmett-Teller surface areas were 23.78, 12.69 and 16.8 m2 g-1, respectively. To confirm the incorporation of active metallic species (Ni, Mn, Na and SiO) into the carbon surface, we performed X-ray photoelectron spectroscopy. TPD-NH3 absorption showed that the Na2SiO3-Ni-MnO/AC catalysts substantially increased in the active sites and exhibited higher acidity. FESEM images showed the morphology of the surface, pore sizes and agglomeration of the catalysts. Moreover, the vibrating sample magnetometer depicted that the Na2SiO3-Ni-MnO/AC catalyst was ferrimagnetic with magnetisation and magnetic saturation values of 40.27 and 86.04 emu g-1, respectively. The optimal reaction conditions were as follows: PFAD/methanol ratio of 16 : 1, 2 wt% mass of the catalyst, temperature of 120 °C and time of 4 h. Using the synthesised nanomagnetic catalyst exhibited 96% conversion of PFAD to methyl esters. Furthermore, the Na2SiO3-Ni-MnO/AC catalyst was easily separated from the reaction mixture using an external magnet and was recycled six times. The modified nanomagnetic catalyst could be an efficient catalyst for discarded feedstocks for biodiesel production.

11.
J Oleo Sci ; 68(11): 1041-1049, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695014

RESUMEN

An optimal ratio of omega-6 to omega-3 (ω-6/ω-3) polyunsaturated fatty acids (PUFA) in the diet prevents the pathogenesis of many inflammatory diseases. This study aimed to synthesize and characterize ternary oil blends with optimal ω-6/ω-3 ratios using olive (OL), sunflower (SU), and cress (CR) oils. The oxidative stability, thermal profile, fatty acid (FA) and tocopherol compositions, and the physicochemical properties of the blends were used to determine their quality. Oil mixtures were prepared with 2, 3, 4, and 5 ω-6/ω-3 ratios. FA composition and tocopherol content were the most important factors affecting the oxidation and thermal stabilities of the oils. All oil mixtures showed good quality indices. Thus, synthetized oil blends with high oxidative stability, high antioxidant content, optimal ω-6/ω-3 ratios, and recommended FA compositions can influence human health. The composition of healthy oil blends with optimal ω-6/ω-3 ratios was expressed mathematically and depicted graphically in a ternary diagram.


Asunto(s)
Grasas Insaturadas en la Dieta/análisis , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Calidad de los Alimentos , Aceites de Plantas/química , Antioxidantes/análisis , Brassicaceae/química , Fenómenos Químicos , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-6/química , Aceite de Oliva/química , Oxidación-Reducción , Aceite de Girasol/química , Temperatura , Tocoferoles/análisis
12.
Foods ; 8(10)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614487

RESUMEN

The stability of refined, bleached, and deodorized palm olein (RBDPO) was studied under controlled heating conditions. RBDPO was heated continuously for 24 h at 160, 170, and 180 °C, with oil sampled at four hour intervals. Thermo-oxidative alterations were measured through various parameters, such as monomeric oxidized triacylglycerols (oxTAG), total polar compounds (TPC), polymerized triacylglycerols (PTG), oxidative stability, and fatty acid composition. After 24 h of heating, the TPC and triacylglycerol oligomers showed a linear increase with heating time at all heating temperatures. At the end of the heating study, more epoxy acids were formed than keto and hydroxy acids. Moreover, caprylic acid, which was not present in fresh oil, was formed in significant amounts. The increase in oxTAG was strongly correlated with the increase in the p-anisidine value and total oxidation value. The decreases in diacylglycerol and free fatty acids were strongly correlated with an increase in PTG.

13.
J Sci Food Agric ; 99(15): 6989-6997, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31414493

RESUMEN

BACKGROUND: Recycled oil has emerged as a significant food safety issue and poses a major threat to public health. To date, very limited studies have been conducted aiming to detect the adulteration of used and recycled palm olein in refined, bleached and deodorized palm olein (RBDPO). In the present study, oil samples that underwent controlled heating and deep-frying studies were refined using the common oil refining procedure to simulate the production of recycled oil. Polymerized triacylglycerol (PTG), oxidized monomeric triacylglycerols (oxTAGs), such as epoxy, keto and hydroxy acids, and caprylic acid have been proposed as potential indicators for tracking the adulteration of recycled oil. RESULTS: For PTG, triacylglycerol oligomers and dimers showed a significant increase (P < 0.05) after the refining process. Although there was a significant reduction (P < 0.05) in the total oxTAGs concentration after refining, they were still present in the recycled palm olein, even though the used palm olein had undergone a complete oil refining process. The concentration of caprylic acid increased significantly (P < 0.05) in palm olein after undergoing various heat and deep-frying treatments and even showed a significant (P < 0.05) increase in recycled oil. CONCLUSION: The results obtained in the present study justify the suitability of the proposed quality parameters for use as quality indices with respect to controlling the adulteration of used and recycled palm olein in RBDPO for the protection of the health and safety of consumers. © 2019 Society of Chemical Industry.


Asunto(s)
Aceite de Palma/química , Triglicéridos/química , Culinaria , Oxidación-Reducción , Control de Calidad , Reciclaje
14.
J Oleo Sci ; 67(4): 397-406, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29526878

RESUMEN

This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.


Asunto(s)
Ésteres , Manipulación de Alimentos/métodos , Aceite de Palma/química , alfa-Clorhidrina , Calidad de los Alimentos , Industria de Procesamiento de Alimentos , Calor , Concentración de Iones de Hidrógeno , Ácidos Fosfóricos
15.
Food Res Int ; 105: 482-491, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433239

RESUMEN

Fish oil-in-water emulsions containing fish oil, thiol-modified ß-lactoglobulin (ß-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified ß-LG fibrils-chitosan complex was higher than those stabilized using ß-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified ß-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion.


Asunto(s)
Quitosano/química , Excipientes/química , Aceites de Pescado/química , Manipulación de Alimentos/métodos , Lactoglobulinas/química , Compuestos de Sulfhidrilo/química , Agua/química , Quitosano/análogos & derivados , Emulsiones , Calor , Oxidación-Reducción , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie
16.
Protein Pept Lett ; 25(2): 164-170, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28240158

RESUMEN

BACKGROUND: Biodiesel is a green fuel consisting of long chain fatty acid monoalkyl esters, which can be blended with diesel or used alone which is usually produced from vegetable oils/fats by either lipasecatalyzed transesterification. In this investigation, an enzyme (Novozym 435) catalyzed process was optimized to prepare methyl esters from crude Citrullus colocynthis oil (CCO) by transesterification of CCO with methanol. However, as per our knowledge, lipase-catalyzed transesterification have not been used for biodiesel production from Citrullus colocynthis. OBJECTIVE: The purpose of this work was to transesterify the CCO in the presence of Candida antarctica lipase as catalyst and methanol. Additionally, the physicochemical parameters/fuel properties of the Citrullus colocynthis methyl ester (CCME) were assessed and compared. METHODS: Lipase-catalyzed reactions were carried out in three necked flask (50 mL) attached with reflux condenser and thermometer, immersed in oil bath at constant stirring speed (400 rpm). The reaction mixture was consisted of CCO and varying the calculated amount of methanol, tert-butyl alcohol, and Novozym 435. The experimental parameters reaction time, methanol/oil molar ratio, reaction temperature, tert-butanol content, Novozym 435 content and water content were optimized for the transesterification reaction. The CCME yield was measured using gas chromatograph. The fuel properties of the produced CCME were determined as per American Society for Testing and Materials (ASTM) and European (EN) biodiesel standard methods. RESULTS: In this study, an enzymatic catalyst was employed to synthesize the CCME from CCO via transesterification. Several variables affecting the CCME yield were optimized as lipase quantity (4%), water content (0.5%), methanol/oil molar ratio (5:1), reaction temperature (43 °C), reaction medium composition (80% tertbutanol/ oil), and reaction time (3.7 h). A CCME yield of 97.8% was achieved using enzyme catalyzed transesterification of CCO under optimal conditions. The significant biodiesel fuel properties of CCME, i.e. cloud point (0.70 °C); cetane number (49.07); kinematic viscosity (2.27 mm2/s); flash point (143 °C); sulfur content (2 ppm) density (880 kg/m3) and acid value (0.076 mg KOH/g) were appraised. CCME also exhibited long-term storage stability (4.80 h) and all the biodiesel fuel properties were within the range of standards (ASTM D6751 and EN 14214). CONCLUSION: The lipase-catalyzed transesterification produced better conversion than the base-catalyzed reaction. The fuel properties of CCME were within the limits of the ASTM D6751 and EN14214 standards. Furthermore, CCME showed good oxidative stability and a long shelf life due its high natural antioxidant content. CCME showed better fuel properties and long-term storage stability due to which it can be used as a potential alternative fuel.


Asunto(s)
Biocombustibles , Citrullus colocynthis/química , Lipasa/química , Aceites de Plantas/química , Catálisis , Enzimas Inmovilizadas , Esterificación , Ésteres/química , Ácidos Grasos/química , Proteínas Fúngicas , Oxidación-Reducción
17.
Food Chem ; 241: 79-85, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28958562

RESUMEN

Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.


Asunto(s)
Tocotrienoles/química , Yogur , Alginatos , Cápsulas , Quitosano , Ácido Glucurónico , Ácidos Hexurónicos
18.
J Agric Food Chem ; 65(48): 10651-10657, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29124932

RESUMEN

Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, ß-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.


Asunto(s)
Alginatos/química , Cápsulas/química , Quitosano/química , Portadores de Fármacos/química , Tocotrienoles/química , Cápsulas/metabolismo , Digestión , Estabilidad de Medicamentos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Concentración Osmolar , Tocotrienoles/metabolismo
19.
Food Funct ; 7(4): 2043-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27010495

RESUMEN

In this study, we prepared a series of lutein nanodispersions via the solvent displacement method, by using surfactants with different stabilizing mechanisms. The surfactants used include Tween 80 (steric stabilization), sodium dodecyl sulfate (SDS; electrostatic stabilization), sodium caseinate (electrosteric stabilization) and SDS-Tween 80 (electrostatic-steric stabilization). We then characterized the resulting lutein nanodispersions in terms of their particle size, particle size distribution, zeta potential, lutein content, flow behavior, apparent viscosity, transmittance, color, morphological properties and their effects on cell viability and cellular uptake. The type of surfactant used significantly (p < 0.05) affected the physical properties of the nanodispersions, but the chemical properties (lutein content) remained unaffected. Transmission electron microscopy (TEM) images obtained from this study demonstrated that the solvent displacement method was capable of producing lutein nanodispersions containing spherical particles with sizes ranging from 66.20-125.25 nm, depending on the type of surfactant used. SDS and SDS-Tween 80 surfactants negatively affected the viability of the HT-29 cells used in this study. Thus, for the cellular uptake determination, only Tween 80 and sodium caseinate surfactants were used. The cellular uptake of the lutein nanodispersion stabilized by sodium caseinate was higher than that which was stabilized by Tween 80. All things considered, the type of surfactant with different stabilizing mechanisms did produce lutein nanodispersions with different characteristics. These findings would aid in future selection of surfactants in order to produce nanodispersions with desirable properties.


Asunto(s)
Composición de Medicamentos/métodos , Luteína/química , Tensoactivos/química , Transporte Biológico , Estabilidad de Medicamentos , Células HT29 , Humanos , Luteína/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Tamaño de la Partícula , Polisorbatos/química , Dodecil Sulfato de Sodio/química
20.
Food Chem ; 205: 155-62, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27006226

RESUMEN

The stability of lutein nanodispersions was evaluated during storage and when exposed to different environmental conditions. Lutein nanodispersions were prepared using Tween 80, sodium dodecyl sulfate (SDS), sodium caseinate (SC) and SDS-Tween 80 as the emulsifiers. During eight weeks of storage, all samples showed remarkable physical stability. However, only the SC-stabilized nanodispersion showed excellent chemical stability. Under different environmental conditions, the nanodispersions exhibited a varied degree of stability. All nanodispersions showed constant particle sizes at temperatures between 30 and 60°C. However, at pH 2-8, only the SC-stabilized nanodispersion was physically unstable. The addition of NaCl (300-400 mM) only caused flocculation in nanodispersion stabilized by SDS-Tween 80. All nanodispersions were physically stable when subjected to different centrifugation speeds. Only Tween 80-stabilized nanodispersion was stable against the effect of freeze-thaw cycles (no phase separation observed). In this study, there was no particular emulsifier that was effective against all of the environmental conditions tested.


Asunto(s)
Emulsionantes/uso terapéutico , Emulsiones/química , Luteína/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA