Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
SLAS Discov ; 26(8): 995-1003, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34049465

RESUMEN

Surface-based biophysical methods for measuring binding kinetics of molecular interactions, such as surface plasmon resonance (SPR) or grating-coupled interferometry (GCI), are now well established and widely used in drug discovery. Increasing throughput is an often-cited need in the drug discovery process and this has been achieved with new instrument generations where multiple interactions are measured in parallel, shortening the total measurement times and enabling new application areas within the field. Here, we present the development of a novel technology called waveRAPID for a further-up to 10-fold-increase in throughput, consisting of an injection method using a single sample. Instead of sequentially injecting increasing analyte concentrations for constant durations, the analyte is injected at a single concentration in short pulses of increasing durations. A major advantage of the new method is its ability to determine kinetics from a single well of a microtiter plate, making it uniquely suitable for kinetic screening. We present the fundamentals of this approach using a small-molecule model system for experimental validation and comparing kinetic parameters to traditional methods. By varying experimental conditions, we furthermore assess the robustness of this new technique. Finally, we discuss its potential for improving hit quality and shortening cycle times in the areas of fragment screening, low-molecular-weight compound screening, and hit-to-lead optimization.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Cinética , Bibliotecas de Moléculas Pequeñas , Resonancia por Plasmón de Superficie/métodos
2.
Nature ; 583(7818): 862-866, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32555462

RESUMEN

The ß1-adrenoceptor (ß1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of ß-arrestin 1 (ßarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the ß1AR-ßarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound ß1AR coupled to the G-protein-mimetic nanobody6 Nb80. ßarr1 couples to ß1AR in a manner distinct to that7 of Gs coupling to ß2AR-the finger loop of ßarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in ßarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. ß1AR coupled to ßarr1 shows considerable differences in structure compared with ß1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of ß1AR, and find that formoterol has a lower affinity for the ß1AR-ßarr1 complex than for the ß1AR-Gs complex. The structural differences between these complexes of ß1AR provide a foundation for the design of small molecules that could bias signalling in the ß-adrenoceptors.


Asunto(s)
Microscopía por Crioelectrón , Fumarato de Formoterol/química , Fumarato de Formoterol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/ultraestructura , beta-Arrestina 1/química , beta-Arrestina 1/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Complejos Multiproteicos , Receptores Adrenérgicos beta 1/metabolismo , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Cadena Única/ultraestructura , Pez Cebra , beta-Arrestina 1/metabolismo
3.
J Vis Exp ; (157)2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32225143

RESUMEN

The key to determining crystal structures of membrane protein complexes is the quality of the sample prior to crystallization. In particular, the choice of detergent is critical, because it affects both the stability and monodispersity of the complex. We recently determined the crystal structure of an active state of bovine rhodopsin coupled to an engineered G protein, mini-Go, at 3.1 Å resolution. Here, we detail the procedure for optimizing the preparation of the rhodopsin-mini-Go complex. Dark-state rhodopsin was prepared in classical and neopentyl glycol (NPG) detergents, followed by complex formation with mini-Go under light exposure. The stability of the rhodopsin was assessed by ultraviolet-visible (UV-VIS) spectroscopy, which monitors the reconstitution into rhodopsin of the light-sensitive ligand, 9-cis retinal. Automated size-exclusion chromatography (SEC) was used to characterize the monodispersity of rhodopsin and the rhodopsin-mini-Go complex. SDS-polyacrylamide electrophoresis (SDS-PAGE) confirmed the formation of the complex by identifying a 1:1 molar ratio between rhodopsin and mini-Go after staining the gel with Coomassie blue. After cross-validating all this analytical data, we eliminated unsuitable detergents and continued with the best candidate detergent for large-scale preparation and crystallization. An additional problem arose from the heterogeneity of N-glycosylation. Heterologously-expressed rhodopsin was observed on SDS-PAGE to have two different N-glycosylated populations, which would probably have hindered crystallogenesis. Therefore, different deglycosylation enzymes were tested, and endoglycosidase F1 (EndoF1) produced rhodopsin with a single species of N-glycosylation. With this strategic pipeline for characterizing protein quality, preparation of the rhodopsin-mini-Go complex was optimized to deliver the crystal structure. This was only the third crystal structure of a GPCR-G protein signaling complex. This approach can also be generalized for other membrane proteins and their complexes to facilitate sample preparation and structure determination.


Asunto(s)
Cristalización/métodos , Proteínas de Unión al GTP/metabolismo , Transducción de Señal
4.
Sci Adv ; 4(9): eaat7052, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30255144

RESUMEN

Selective coupling of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) to specific Gα-protein subtypes is critical to transform extracellular signals, carried by natural ligands and clinical drugs, into cellular responses. At the center of this transduction event lies the formation of a signaling complex between the receptor and G protein. We report the crystal structure of light-sensitive GPCR rhodopsin bound to an engineered mini-Go protein. The conformation of the receptor is identical to all previous structures of active rhodopsin, including the complex with arrestin. Thus, rhodopsin seems to adopt predominantly one thermodynamically stable active conformation, effectively acting like a "structural switch," allowing for maximum efficiency in the visual system. Furthermore, our analysis of the well-defined GPCR-G protein interface suggests that the precise position of the carboxyl-terminal "hook-like" element of the G protein (its four last residues) relative to the TM7/helix 8 (H8) joint of the receptor is a significant determinant in selective G protein activation.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Rodopsina/química , Rodopsina/metabolismo , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mutación , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/genética
5.
Nature ; 558(7711): 620-623, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925951

RESUMEN

G-protein-coupled receptors (GPCRs) form the largest family of receptors encoded by the human genome (around 800 genes). They transduce signals by coupling to a small number of heterotrimeric G proteins (16 genes encoding different α-subunits). Each human cell contains several GPCRs and G proteins. The structural determinants of coupling of Gs to four different GPCRs have been elucidated1-4, but the molecular details of how the other G-protein classes couple to GPCRs are unknown. Here we present the cryo-electron microscopy structure of the serotonin 5-HT1B receptor (5-HT1BR) bound to the agonist donitriptan and coupled to an engineered Go heterotrimer. In this complex, 5-HT1BR is in an active state; the intracellular domain of the receptor is in a similar conformation to that observed for the ß2-adrenoceptor (ß2AR) 3 or the adenosine A2A receptor (A2AR) 1 in complex with Gs. In contrast to the complexes with Gs, the gap between the receptor and the Gß-subunit in the Go-5-HT1BR complex precludes molecular contacts, and the interface between the Gα-subunit of Go and the receptor is considerably smaller. These differences are likely to be caused by the differences in the interactions with the C terminus of the Go α-subunit. The molecular variations between the interfaces of Go and Gs in complex with GPCRs may contribute substantially to both the specificity of coupling and the kinetics of signalling.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Receptor de Serotonina 5-HT1B/metabolismo , Receptor de Serotonina 5-HT1B/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Modelos Moleculares , Nitrilos/química , Nitrilos/metabolismo , Piperazinas/química , Piperazinas/metabolismo , Conformación Proteica , Receptor de Serotonina 5-HT1B/química , Agonistas del Receptor de Serotonina 5-HT1/química , Agonistas del Receptor de Serotonina 5-HT1/metabolismo , Triptaminas/química , Triptaminas/metabolismo
6.
J Biol Chem ; 293(19): 7466-7473, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29523687

RESUMEN

G protein-coupled receptors (GPCRs) are key signaling proteins that regulate nearly every aspect of cell function. Studies of GPCRs have benefited greatly from the development of molecular tools to monitor receptor activation and downstream signaling. Here, we show that mini G proteins are robust probes that can be used in a variety of assay formats to report GPCR activity in living cells. Mini G (mG) proteins are engineered GTPase domains of Gα subunits that were developed for structural studies of active-state GPCRs. Confocal imaging revealed that mG proteins fused to fluorescent proteins were located diffusely in the cytoplasm and translocated to sites of receptor activation at the cell surface and at intracellular organelles. Bioluminescence resonance energy transfer (BRET) assays with mG proteins fused to either a fluorescent protein or luciferase reported agonist, superagonist, and inverse agonist activities. Variants of mG proteins (mGs, mGsi, mGsq, and mG12) corresponding to the four families of Gα subunits displayed appropriate coupling to their cognate GPCRs, allowing quantitative profiling of subtype-specific coupling to individual receptors. BRET between luciferase-mG fusion proteins and fluorescent markers indicated the presence of active GPCRs at the plasma membrane, Golgi apparatus, and endosomes. Complementation assays with fragments of NanoLuc luciferase fused to GPCRs and mG proteins reported constitutive receptor activity and agonist-induced activation with up to 20-fold increases in luminescence. We conclude that mG proteins are versatile tools for studying GPCR activation and coupling specificity in cells and should be useful for discovering and characterizing G protein subtype-biased ligands.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Sondas Moleculares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sitios de Unión , Compartimento Celular , Transferencia de Energía , Células HEK293 , Humanos , Luciferasas/metabolismo , Microscopía Confocal , Mutación , Unión Proteica , Receptores Acoplados a Proteínas G/genética
7.
PLoS One ; 12(4): e0175642, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426733

RESUMEN

Mini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state. The first mini-G protein developed was mini-Gs. Here we extend the family of mini-G proteins to include mini-Golf, mini-Gi1, mini-Go1 and the chimeras mini-Gs/q and mini-Gs/i. The mini-G proteins were shown to couple to relevant GPCRs and to form stable complexes with purified receptors that could be purified by size exclusion chromatography. Agonist-bound GPCRs coupled to a mini-G protein showed higher thermal stability compared to the agonist-bound receptor alone. Fusion of GFP at the N-terminus of mini-G proteins allowed receptor coupling to be monitored by fluorescence-detection size exclusion chromatography (FSEC) and, in a separate assay, the affinity of mini-G protein binding to detergent-solubilised receptors was determined. This work provides the foundation for the development of any mini-G protein and, ultimately, for the structure determination of GPCRs in a fully active state.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Cromatografía en Gel , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/clasificación , Humanos , Ligandos , Filogenia , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Homología de Secuencia de Aminoácido , Espectrometría de Fluorescencia
9.
Nature ; 536(7614): 104-7, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27462812

RESUMEN

G-protein-coupled receptors (GPCRs) are essential components of the signalling network throughout the body. To understand the molecular mechanism of G-protein-mediated signalling, solved structures of receptors in inactive conformations and in the active conformation coupled to a G protein are necessary. Here we present the structure of the adenosine A(2A) receptor (A(2A)R) bound to an engineered G protein, mini-Gs, at 3.4 Å resolution. Mini-Gs binds to A(2A)R through an extensive interface (1,048 Å2) that is similar, but not identical, to the interface between Gs and the ß2-adrenergic receptor. The transition of the receptor from an agonist-bound active-intermediate state to an active G-protein-bound state is characterized by a 14 Å shift of the cytoplasmic end of transmembrane helix 6 (H6) away from the receptor core, slight changes in the positions of the cytoplasmic ends of H5 and H7 and rotamer changes of the amino acid side chains Arg3.50, Tyr5.58 and Tyr7.53. There are no substantial differences in the extracellular half of the receptor around the ligand binding pocket. The A(2A)R-mini-Gs structure highlights both the diversity and similarity in G-protein coupling to GPCRs and hints at the potential complexity of the molecular basis for G-protein specificity.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Agonistas del Receptor de Adenosina A2/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Citoplasma/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Especificidad por Sustrato
10.
PLoS One ; 9(3): e92727, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24663151

RESUMEN

The ß1-adrenoceptor (ß1AR) is a G protein-coupled receptor (GPCR) that is activated by the endogenous agonists adrenaline and noradrenaline. We have determined the structure of an ultra-thermostable ß1AR mutant bound to the weak partial agonist cyanopindolol to 2.1 Å resolution. High-quality crystals (100 µm plates) were grown in lipidic cubic phase without the assistance of a T4 lysozyme or BRIL fusion in cytoplasmic loop 3, which is commonly employed for GPCR crystallisation. An intramembrane Na+ ion was identified co-ordinated to Asp872.50, Ser1283.39 and 3 water molecules, which is part of a more extensive network of water molecules in a cavity formed between transmembrane helices 1, 2, 3, 6 and 7. Remarkably, this water network and Na+ ion is highly conserved between ß1AR and the adenosine A2A receptor (rmsd of 0.3 Å), despite an overall rmsd of 2.4 Å for all Cα atoms and only 23% amino acid identity in the transmembrane regions. The affinity of agonist binding and nanobody Nb80 binding to ß1AR is unaffected by Na+ ions, but the stability of the receptor is decreased by 7.5°C in the absence of Na+. Mutation of amino acid side chains that are involved in the co-ordination of either Na+ or water molecules in the network decreases the stability of ß1AR by 5-10°C. The data suggest that the intramembrane Na+ and associated water network stabilise the ligand-free state of ß1AR, but still permits the receptor to form the activated state which involves the collapse of the Na+ binding pocket on agonist binding.


Asunto(s)
Antagonistas Adrenérgicos beta/metabolismo , Membrana Celular/metabolismo , Pindolol/análogos & derivados , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Sodio/farmacología , Animales , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Mutación , Pindolol/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Receptores Adrenérgicos beta 1/genética , Temperatura , Pavos
11.
Antimicrob Agents Chemother ; 56(7): 3826-32, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22564848

RESUMEN

The increasing number of carbapenem-resistant Acinetobacter baumannii isolates is a major cause for concern which restricts therapeutic options to treat severe infections caused by this emerging pathogen. To identify the molecular mechanisms involved in carbapenem resistance, we studied the contribution of an outer membrane protein homologue of the Pseudomonas aeruginosa OprD porin. Suspected to be the preferred pathway of carbapenems in A. baumannii, the oprD homologue gene was inactivated in strain ATCC 17978. Comparison of wild-type and mutant strains did not confirm the expected increased resistance to any antibiotic tested. OprD homologue sequence analysis revealed that this protein actually belongs to an OprD subgroup but is closer to the P. aeruginosa OprQ protein, with which it could share some functions, e.g., allowing bacterial survival under low-iron or -magnesium growth conditions or under poor oxygenation. We thus overexpressed and purified a recombinant OprD homologue protein to further examine its functional properties. As a specific channel, this porin presented rather low single-channel conductance, i.e., 28 pS in 1 M KCl, and was partially closed by micro- and millimolar concentrations of Fe(3+) and Mg(2+), respectively, but not by imipenem and meropenem or basic amino acids. The A. baumannii OprD homologue is likely not involved in the carbapenem resistance mechanism, but as an OprQ-like protein, it could contribute to the adaptation of this bacterium to magnesium- and/or iron-depleted environments.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Bleomicina/farmacología , Kanamicina/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
PLoS One ; 6(9): e23834, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931618

RESUMEN

BACKGROUND: Sonic hedgehog (Shh) signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. METHODOLOGY/PRINCIPAL FINDINGS: Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol) from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. CONCLUSION/SIGNIFICANCE: Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.


Asunto(s)
Colesterol/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Células 3T3 NIH , Receptores Patched , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal/efectos de los fármacos , Receptor Smoothened , Alcaloides de Veratrum/farmacología
13.
Mol Membr Biol ; 28(3): 171-81, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21314479

RESUMEN

Mixed protein-surfactant micelles are used for in vitro studies and 3D crystallization when solutions of pure, monodisperse integral membrane proteins are required. However, many membrane proteins undergo inactivation when transferred from the biomembrane into micelles of conventional surfactants with alkyl chains as hydrophobic moieties. Here we describe the development of surfactants with rigid, saturated or aromatic hydrocarbon groups as hydrophobic parts. Their stabilizing properties are demonstrated with three different integral membrane proteins. The temperature at which 50% of the binding sites for specific ligands are lost is used as a measure of stability and dodecyl-ß-D-maltoside ('C12-b-M') as a reference for conventional surfactants. One surfactant increased the stability of two different G protein-coupled receptors and the human Patched protein receptor by approximately 10°C compared to C12-b-M. Another surfactant yielded the highest stabilization of the human Patched protein receptor compared to C12-b-M (13°C) but was inferior for the G protein-coupled receptors. In addition, one of the surfactants was successfully used to stabilize and crystallize the cytochrome b(6 )f complex from Chlamydomonas reinhardtii. The structure was solved to the same resolution as previously reported in C12-b-M.


Asunto(s)
Cristalización/métodos , Proteínas de la Membrana/química , Tensoactivos/química , Agua/química , Chlamydomonas reinhardtii/química , Complejo de Citocromo b6f/química , Glucósidos/química , Humanos , Receptores Patched , Receptores de Superficie Celular/química , Receptores Acoplados a Proteínas G/química , Solubilidad
14.
Nature ; 469(7329): 241-4, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21228877

RESUMEN

ß-adrenergic receptors (ßARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit ßARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) ß(1)-adrenergic receptor (ß(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacología , Antagonistas de Receptores Adrenérgicos beta 1/química , Antagonistas de Receptores Adrenérgicos beta 1/farmacología , Agonismo Parcial de Drogas , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/metabolismo , Antagonistas de Receptores Adrenérgicos beta 1/metabolismo , Albuterol/química , Albuterol/metabolismo , Albuterol/farmacología , Anfetaminas/química , Anfetaminas/metabolismo , Anfetaminas/farmacología , Animales , Sitios de Unión , Catecolaminas/metabolismo , Cristalografía por Rayos X , Dobutamina/química , Dobutamina/metabolismo , Dobutamina/farmacología , Diseño de Fármacos , Enlace de Hidrógeno , Hidroxiquinolinas/química , Hidroxiquinolinas/metabolismo , Hidroxiquinolinas/farmacología , Isoproterenol/química , Isoproterenol/metabolismo , Isoproterenol/farmacología , Ligandos , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Serina/química , Serina/metabolismo , Relación Estructura-Actividad , Pavos
15.
Expert Rev Proteomics ; 7(4): 601-12, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20653513

RESUMEN

The Hedgehog pathway plays a crucial role in growth and patterning during embryonic development and is involved in stem cell maintenance and proliferation in adult tissues. Mutations that increase the overall activity of the pathway are often associated with a higher incidence of cancers. This article focuses on the mutations, misfoldings and deregulations of the Hedgehog pathway proteins that have been reported to be involved in different tumors, and on small molecules targeting these proteins shown to slow down the growth of certain tumors in various animal models. We propose that proteomics could be a powerful tool to identify new targets of the Hedgehog pathway, enabling the discovery of effective and novel treatments for cancers.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Proteínas Hedgehog/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Antineoplásicos , Proteínas Hedgehog/genética , Humanos , Proteómica/métodos , Transducción de Señal
16.
Biochim Biophys Acta ; 1798(6): 1100-10, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20188061

RESUMEN

Smoothened is a member of the G-protein coupled receptor (GPCR) family responsible for the transduction of the Hedgehog signal to the intracellular effectors of the Hedgehog signaling pathway. Aberrant regulation of this receptor is implicated in many cancers but also in neurodegenerative disorders. Despite the pharmacological relevance of this receptor, very little is known about its functional mechanism and its physiological ligand. In order to characterize this receptor for basic and pharmacological interests, we developed the expression of human Smoothened in the yeast Saccharomyces cerevisiae and Smoothened was then purified. Using Surface Plasmon Resonance technology, we showed that human Smoothened was in a native conformational state and able to interact with its antagonist, the cyclopamine, both at the yeast plasma membrane and after purification. Thermostability assays on purified human Smoothened showed that this GPCR is relatively stable in the classical detergent dodecyl-beta-d-maltoside (DDM). The fluorinated surfactant C(8)F(17)TAC, which has been proposed to be less aggressive towards membrane proteins than classical detergents, increased Smoothened thermostability in solution. Moreover, the replacement of a glycine by an arginine in the third intracellular loop of Smoothened coupled to the use of the fluorinated surfactant C(8)F(17)TAC during the mutant purification increased Smoothened thermostability even more. These data will be very useful for future crystallization assays and structural characterization of the human receptor Smoothened.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Sustitución de Aminoácidos , Glucósidos/química , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Mutación Missense , Neoplasias/genética , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Estabilidad Proteica , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Receptor Smoothened , Resonancia por Plasmón de Superficie , Tensoactivos/química , Alcaloides de Veratrum/química
17.
Methods Mol Biol ; 601: 87-103, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20099141

RESUMEN

Due to their implication in numerous diseases like cancer, cystic fibrosis, epilepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer disease, membrane proteins (MPs) represent around 50% of drug targets. However, only 204 crystal structures of MPs have been solved. Structural analysis requires large quantities of pure and active proteins. The majority of medically and pharmaceutically relevant MPs are present in tissues at low concentration, which makes heterologous expression in large-scale production-adapted cells a prerequisite for structural studies. The yeast Saccharomyces cerevisiae is a convenient host for the production of mammalian MPs for functional and structural studies. Like bacteria, they are straightforward to manipulate genetically, are well characterized, can be easily cultured, and can be grown inexpensively in large quantities. The advantage of yeast compared to bacteria is that they have protein-processing and posttranslational modification mechanisms related to those found in mammalian cells. The recombinant rabbit muscle Ca(2+)-ATPase (adenosine triphosphatase), the first heterologously expressed mammalian MP for which the crystal structure was resolved, has been produced in S. cerevisiae. In this chapter, the focus is on expression of recombinant human integral MPs in a functional state at the plasma membrane of the yeast S. cerevisiae. Optimization of yeast culture and of MP preparations is detailed for two human receptors of the Hedgehog pathway: Patched and Smoothened.


Asunto(s)
Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/aislamiento & purificación , Saccharomyces cerevisiae/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos/genética , Humanos , Proteínas de la Membrana/metabolismo , Receptores Patched , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/aislamiento & purificación , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/aislamiento & purificación , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened
18.
Biochim Biophys Acta ; 1788(9): 1813-21, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19463780

RESUMEN

The Sonic Hedgehog (Shh) signalling pathway plays an important role both in embryonic development and in adult stem cell function. Inappropriate regulation of this pathway is often due to dysfunction between two membrane receptors Patched (Ptc) and Smoothened (Smo), which lead to birth defects, cancer or neurodegenerative diseases. However, little is known about Ptc, the receptor of the Shh protein, and the way Ptc regulates Smo, the receptor responsible for the transduction of the signal. To develop structure-function studies of these receptors, we expressed human Ptc (hPtc) in the yeast Saccharomyces cerevisiae. We demonstrated that hPtc expressed in a yeast membrane fraction is able to interact with its purified ligand Shh, indicating that hPtc is produced in yeast in its native conformational state. Using Surface Plasmon Resonance technology, we showed that fluorinated surfactants preserve the ability of hPtc to interact with its ligand after purification. This is the first report on the heterologous expression and the purification of a native and stable conformation of the human receptor Ptc. This work will allow the scale-up of hPtc production enabling its biochemical characterization, allowing the development of new therapeutic approaches against diseases induced by Shh signalling dysfunction.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Hedgehog/fisiología , Receptores de Superficie Celular/química , Receptores Acoplados a Proteínas G/química , Proteínas Hedgehog/biosíntesis , Humanos , Receptores Patched , Receptor Patched-1 , Fragmentos de Péptidos/biosíntesis , Conformación Proteica , Receptores de Superficie Celular/aislamiento & purificación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Receptor Smoothened , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA