Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Phys Eng Express ; 10(5)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959871

RESUMEN

Biocompatible polymer-based scaffolds hold great promise for neural repair, especially when they are coupled with electrostimulation to induce neural differentiation. In this study, a combination of polyacrylonitrile/polyaniline (PAN/PANI) and Carbon Nanotubes (CNTs) were used to fabricate three different biomimetic electrospun scaffolds (samples 1, 2 and 3 containing 0.26 wt%, 1 wt% and 2 wt% of CNTs, respectively). These scaffolds underwent thorough characterization for assessing electroconductivity, tensile strength, wettability, degradability, swelling, XRD, and FTIR data. Notably, scanning electron microscopy (SEM) images revealed a three-dimensional scaffold morphology with aligned fibers ranging from 60 nm to 292 nm in diameter. To comprehensively investigate the impact of electrical stimulation on the nervous differentiation of the stem cells seeded on these scaffolds, cell morphology and adhesion were assessed based on SEM images. Additionally, scaffold biocompatibility was studied through MTT assay. Importantly, Real-Time PCR results indicated the expression of neural markers-Nestin,ß-tubulin III, and MAP2-by the cells cultured on these samples. In comparison with the control group, samples 1 and 2 exhibited significant increases in Nestin marker expression, indicating early stages of neuronal differentiation, whileß-tubulin III expression was significantly reduced and MAP2 expression remained statistically unchanged. In contrast, sample 3 did not display a statistically significant upturn in Nestin maker expression, while showcasing remarkable increases in the expression of both MAP2 andß-tubulin III, as markers of the end stages of differentiation, leading to postmitotic neurons. These results could be attributed to the higher electroconductivity of S3 compared to other samples. Our findings highlight the biomimetic potential of the prepared scaffolds for neural repair, illustrating their effectiveness in guiding stem cell differentiation toward a neural lineage.


Asunto(s)
Resinas Acrílicas , Compuestos de Anilina , Diferenciación Celular , Nanotubos de Carbono , Regeneración Nerviosa , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Nanotubos de Carbono/química , Compuestos de Anilina/química , Resinas Acrílicas/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Estimulación Eléctrica , Humanos , Adhesión Celular , Microscopía Electrónica de Rastreo , Células Madre/citología , Resistencia a la Tracción , Neuronas/metabolismo , Neuronas/citología , Animales , Nestina/metabolismo
2.
Materials (Basel) ; 16(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37049093

RESUMEN

Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.

3.
Mater Today Bio ; 20: 100614, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37008830

RESUMEN

Repairing central nervous system (CNS) is difficult due to the inability of neurons to recover after damage. A clinically acceptable treatment to promote CNS functional recovery and regeneration is currently unavailable. According to recent studies, injectable hydrogels as biodegradable scaffolds for CNS tissue engineering and regeneration have exceptionally desirable attributes. Hydrogel has a biomimetic structure similar to extracellular matrix, hence has been considered a 3D scaffold for CNS regeneration. An interesting new type of hydrogel, injectable hydrogels, can be injected into target areas with little invasiveness and imitate several aspects of CNS. Injectable hydrogels are being researched as therapeutic agents because they may imitate numerous properties of CNS tissues and hence reduce subsequent injury and regenerate neural tissue. Because of their less adverse effects and cost, easier use and implantation with less pain, and faster regeneration capacity, injectable hydrogels, are more desirable than non-injectable hydrogels. This article discusses the pathophysiology of CNS and the use of several kinds of injectable hydrogels for brain and spinal cord tissue engineering, paying particular emphasis to recent experimental studies.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36987630

RESUMEN

Radiotherapy is an inevitable choice for cancer treatment that is applied as combinatorial therapy along with surgery and chemotherapy. Nevertheless, radiotherapy at high doses kills normal and tumor cells at the same time. In addition, some tumor cells are resistant to radiotherapy. Recently, many researchers have focused on high-Z nanomaterials as radiosensitizers for radiotherapy. Among them, gold nanoparticles (GNPs) have shown remarkable potential due to their promising physical, chemical, and biological properties. Although few clinical trial studies have been performed on drug delivery and photosensitization with lasers, GNPs have not yet received Food and Drug Administration approval for use in radiotherapy. The sensitization effects of GNPs are dependent on their concentration in cells and x-ray energy deposition during radiotherapy. Notably, some limitations related to the properties of the GNPs, including their size, shape, surface charge, and ligands, and the radiation source energy should be resolved. At the first, this review focuses on some of the challenges of using GNPs as radiosensitizers and some biases among in vitro/in vivo, Monte Carlo, and clinical studies. Then, we discuss the challenges in the clinical translation of GNPs as radiosensitizers for radiotherapy and proposes feasible solutions. And finally, we suggest that certain areas be considered in future research. This article is categorized under: Therapeutic Approaches and Drug Discovery > NA.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Fármacos Sensibilizantes a Radiaciones , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/química , Oro/uso terapéutico , Oro/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Sistemas de Liberación de Medicamentos
5.
Tissue Cell ; 81: 101996, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36657256

RESUMEN

In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 µA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and ß-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and ß-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.


Asunto(s)
Actinas , Músculo Liso Vascular , Animales , Ovinos , Músculo Liso Vascular/metabolismo , Actinas/metabolismo , Nestina , Vimentina/metabolismo , Diferenciación Celular/fisiología , Fenotipo , Estimulación Eléctrica , Células Cultivadas , Proliferación Celular
6.
J Biomed Mater Res B Appl Biomater ; 111(3): 701-716, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36214332

RESUMEN

The healing process for spinal cord injuries is complex and presents many challenges. Current advances in nerve regeneration are based on promising tissue engineering techniques, However, the chances of success depend on better mimicking the extracellular matrix (ECM) of neural tissue and better supporting neurons in a three-dimensional environment. The ECM provides excellent biological conditions, including desirable morphological features, electrical conductivity, and chemical compositions for neuron attachment, proliferation and function. This review outlines the rationale for developing a construct for neuron regrowth in spinal cord injury using appropriate biomaterials and scaffolding techniques.


Asunto(s)
Traumatismos de la Médula Espinal , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Biomimética , Traumatismos de la Médula Espinal/terapia , Neuronas , Regeneración Nerviosa/fisiología , Andamios del Tejido/química
7.
Carbohydr Polym ; 278: 118926, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973744

RESUMEN

Skin tissue engineering is an advanced method to repair and regenerate skin injuries. Recent research is focused on the development of scaffolds that are safe, bioactive, and cytocompatible. In this work, a new hybrid nanofibrous scaffold composed of polycaprolactone/chitosan-polyethylene oxide (PCL/Cs-PEO) incorporated with Arnebia euchroma (A. euchroma) extract were synthesized by the two-nozzle electrospinning method. Then the synthesized scaffold was characterized for morphology, sustainability, chemical structure and properties. Moreover, to verify their potential in the burn wound healing process, biodegradation rate, contact angle, swelling properties, water vapor permeability, mechanical properties, antibacterial activity and drug release profile were measured. Furthermore, cytotoxicity and biocompatibility tests were performed on human dermal fibroblasts cell line via XTT and LDH assay. It is shown that the scaffold improved and increased proliferation during in-vitro studies. Thus, results confirm the efficacy and potential of the hybrid nanofibrous scaffold for skin tissue engineering.


Asunto(s)
Antibacterianos/química , Materiales Biocompatibles/química , Quitosano/química , Poliésteres/química , Polietilenglicoles/química , Ingeniería de Tejidos , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Boraginaceae/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Quitosano/farmacología , Escherichia coli/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Poliésteres/farmacología , Polietilenglicoles/farmacología , Staphylococcus aureus/efectos de los fármacos , Andamios del Tejido/química
8.
Sci Rep ; 11(1): 21722, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741076

RESUMEN

Spinal cord regeneration is limited due to various obstacles and complex pathophysiological events after injury. Combination therapy is one approach that recently garnered attention for spinal cord injury (SCI) recovery. A composite of three-dimensional (3D) collagen hydrogel containing epothilone B (EpoB)-loaded polycaprolactone (PCL) microspheres (2.5 ng/mg, 10 ng/mg, and 40 ng/mg EpoB/PCL) were fabricated and optimized to improve motor neuron (MN) differentiation efficacy of human endometrial stem cells (hEnSCs). The microspheres were characterized using liquid chromatography-mass/mass spectrometry (LC-mas/mas) to assess the drug release and scanning electron microscope (SEM) for morphological assessment. hEnSCs were isolated, then characterized by flow cytometry, and seeded on the optimized 3D composite. Based on cell morphology and proliferation, cross-linked collagen hydrogels with and without 2.5 ng/mg EpoB loaded PCL microspheres were selected as the optimized formulations to compare the effect of EpoB release on MN differentiation. After differentiation, the expression of MN markers was estimated by real-time PCR and immunofluorescence (IF). The collagen hydrogel containing the EpoB group had the highest HB9 and ISL-1 expression and the longest neurite elongation. Providing a 3D permissive environment with EpoB, significantly improves MN-like cell differentiation and maturation of hEnSCs and is a promising approach to replace lost neurons after SCI.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Epotilonas/administración & dosificación , Neuronas Motoras/citología , Moduladores de Tubulina/administración & dosificación , Células Madre Adultas/ultraestructura , Técnicas de Cultivo Tridimensional de Células , Colágeno/química , Colágeno/farmacología , Endometrio/citología , Femenino , Proteínas Hedgehog/administración & dosificación , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Microesferas , Poliésteres , Cultivo Primario de Células , Tretinoina/administración & dosificación
9.
Life Sci ; 282: 119602, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217765

RESUMEN

The application of electroactive scaffolds can be promising for bone tissue engineering applications. In the current paper, we aimed to fabricate an electro-conductive scaffold based on carbon nanofibers (CNFs) containing ferrous sulfate. FeSO4·7H2O salt with different concentrations 5, 10, and 15 wt%, were blended with polyacrylonitrile (PAN) polymer as the precursor and converted to Fe2O3/CNFs nanocomposite by electrospinning and heat treatment. The characterization was conducted using SEM, EDX, XRD, FTIR, and Raman methods. The results showed that the incorporation of Fe salt induces no adverse effect on the nanofibers' morphology. EDX analysis confirmed that the Fe ions are uniformly dispersed throughout the CNF mat. FTIR spectroscopy showed the interaction of Fe salt with PAN polymer. Raman spectroscopy showed that the incorporation of FeSO4·7H2O reduced the ID/IG ratio, indicating more ordered carbon in the synthesized nanocomposite. Electrical resistance measurement depicted that, although the incorporation of ferrous sulfate reduced the electrical conductivity, the conductive is suitable for electrical stimulation. The in vitro studies revealed that the prepared nanocomposites were cytocompatible and only negligible toxicity (less than 10%) induced by CNFs/Fe2O3 fabricated from PAN FeSO4·7H2O 15%. Although various nanofibrous composite fabricated with Fe NPs have been evaluated for tissue engineering applications, CNFs exhibited promising properties, such as excellent mechanical strength, biocompatibility, and electrical conductivity. These results showed that the fabricated nanocomposites could be applied as the bone tissue engineering scaffold.


Asunto(s)
Huesos/citología , Carbono/química , Compuestos Ferrosos/química , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Línea Celular , Proliferación Celular , Conductividad Eléctrica , Humanos , Nanofibras/ultraestructura
10.
Cell Biol Int ; 45(1): 140-153, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33049079

RESUMEN

Human endometrial stem cells (hEnSCs) that can be differentiated into various neural cell types have been regarded as a suitable cell population for neural tissue engineering and regenerative medicine. Considering different interactions between hormones, growth factors, and other factors in the neural system, several differentiation protocols have been proposed to direct hEnSCs towards specific neural cells. The 17ß-estradiol plays important roles in the processes of development, maturation, and function of nervous system. In the present research, the impact of 17ß-estradiol (estrogen, E2) on the neural differentiation of hEnSCs was examined for the first time, based on the expression levels of neural genes and proteins. In this regard, hEnSCs were differentiated into neuron-like cells after exposure to retinoic acid (RA), epidermal growth factor (EGF), and also fibroblast growth factor-2 (FGF2) in the absence or presence of 17ß-estradiol. The majority of cells showed a multipolar morphology. In all groups, the expression levels of nestin, Tuj-1 and NF-H (neurofilament heavy polypeptide) (as neural-specific markers) increased during 14 days. According to the outcomes of immunofluorescence (IF) and real-time PCR analyses, the neuron-specific markers were more expressed in the estrogen-treated groups, in comparison with the estrogen-free ones. These findings suggest that 17ß-estradiol along with other growth factors can stimulate and upregulate the expression of neural markers during the neuronal differentiation of hEnSCs. Moreover, our findings confirm that hEnSCs can be an appropriate cell source for cell therapy of neurodegenerative diseases and neural tissue engineering.


Asunto(s)
Diferenciación Celular , Endometrio/citología , Estradiol/farmacología , Neuronas/citología , Células Madre/citología , Biomarcadores/metabolismo , Linaje de la Célula , Forma de la Célula , Células Cultivadas , Femenino , Humanos
11.
Mater Sci Eng C Mater Biol Appl ; 117: 111226, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32919620

RESUMEN

Bone tissue engineering is a new and applicable emerging approach to repair bone defects. Electrical conductive scaffolds through a physiologically relevant physical signaling, i.e., electrical stimulation, are highly promising candidates for tissue engineering applications. In this paper, we fabricated carbon nanofiber/gold nanoparticle (CNF/AuNP) conductive scaffolds using two distinct methods. These methods are blending electrospinning in which AuNPs were blended with electrospinning solution, and electrospinning/electrospraying in which AuNPs were electrosprayed simultaneously with electrospinning. The obtained electrospun mats underwent a stabilization/carbonization process. The scaffolds were characterized by SEM, XRD, FT-IR, and Raman spectroscopy. SEM characterizations showed improved morphology and a slight decrease in the diameter of the electrospinned and electrosprayed nanofibers (from 178.66 ± 38.40 nm to 157.94 ± 24.14 nm and 120.81 ± 13.77 nm, respectively). Raman spectroscopy showed improvement in the graphitization. Electrical conductivity improved by up to 29.2% and 81% in electrospraying and blending electrospinning modes, respectively. Indirect MTT and LDH toxicity assays directly were performed to assess MG63 cell toxicity, but no significant toxicity was observed, and the scaffolds did not adversely affect cell proliferation. It can be concluded these scaffolds have the potential for bone tissue engineering applications.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Conductividad Eléctrica , Oro , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...