Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930373

RESUMEN

In this study, the potential of silk fibroin biomaterials for enhancing wound healing is explored, focusing on their integration into a human 3D ex vivo wound model derived from abdominoplasties. For this purpose, cast silk fibroin membranes and electrospun nonwoven matrices from Bombyx mori silk cocoons were compared to untreated controls over 20 days. Keratinocyte behavior and wound healing were analyzed qualitatively and quantitatively by histomorphometric and immune histochemical methods (HE, Ki67, TUNEL). Findings reveal rapid keratinocyte proliferation on both silk fibroin membrane and nonwoven matrices, along with enhanced infiltration in the matrix, suggesting improved early wound closure. Silk fibroin membranes exhibited a significantly improved early regeneration, followed by nonwoven matrices (p < 0.05) compared to untreated wounds, resulting in the formation of multi-layered epidermal structures with complete regeneration. Overall, the materials demonstrated excellent biocompatibility, supporting cell activity with no signs of increased apoptosis or early degradation. These results underscore silk fibroin's potential in clinical wound care, particularly in tissue integration and re-epithelialization, offering valuable insights for advanced and-as a result of the electrospinning technique-individual wound care development. Furthermore, the use of an ex vivo wound model appears to be a viable option for pre-clinical testing.

2.
Pathol Res Pract ; 253: 154988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118215

RESUMEN

Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias Gastrointestinales , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/genética , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/terapia , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...