Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Lancet Psychiatry ; 11(11): 899-909, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39419563

RESUMEN

BACKGROUND: Cognitive deficits are a key source of disability in individuals with major depressive disorder (MDD) and worsen with disease progression. Despite their clinical relevance, the underlying mechanisms of cognitive deficits remain poorly elucidated, hampering effective treatment strategies. Emerging evidence suggests that alterations in white matter microstructure might contribute to cognitive dysfunction in MDD. We aimed to investigate the complex association between changes in white matter integrity, cognitive decline, and disease course in MDD in a comprehensive longitudinal dataset. METHODS: In the naturalistic, observational, prospective, case-control Marburg-Münster Affective Disorders Cohort Study, individuals aged 18-65 years and of Caucasian ancestry were recruited from local psychiatric hospitals in Münster and Marburg, Germany, and newspaper advertisements. Individuals diagnosed with MDD and individuals without any history of psychiatric disorder (ie, healthy controls) were included in this subsample analysis. Participants had diffusion-weighted imaging, a battery of neuropsychological tests, and detailed clinical data collected at baseline and at 2 years of follow-up. We used linear mixed-effect models to compare changes in cognitive performance and white matter integrity between participants with MDD and healthy controls. Diffusion-weighted imaging analyses were conducted using tract-based spatial statistics. To correct for multiple comparisons, threshold free cluster enhancement (TFCE) was used to correct α-values at the family-wise error rate (FWE; ptfce-FWE). Effect sizes were estimated by conditional, partial R2 values (sr2) following the Nakagawa and Schielzeth method to quantify explained variance. The association between changes in cognitive performance and changes in white matter integrity was analysed. Finally, we examined whether the depressive disease course between assessments predicted cognitive performance at follow-up and whether white matter integrity mediated this association. People with lived experience were not involved in the research and writing process. FINDINGS: 881 participants were selected for our study, of whom 418 (47%) had MDD (mean age 36·8 years [SD 13·4], 274 [66%] were female, and 144 [34%] were male) and 463 (53%) were healthy controls (mean age 35·6 years [13·5], 295 [64%] were female, and 168 [36%] were male). Baseline assessments were done between Sept 11, 2014, and June 3, 2019, and after a mean follow-up of 2·20 years (SD 0·19), follow-up assessments were done between Oct 6, 2016, and May 31, 2021. Participants with MDD had lower cognitive performance than did healthy controls (p<0·0001, sr2=0·056), regardless of timepoint. Analyses of diffusion-weighted imaging indicated a significant diagnosis × time interaction with a steeper decline in white matter integrity of the superior longitudinal fasciculus over time in participants with MDD than in healthy controls (ptfce-FWE=0·026, sr2=0·002). Furthermore, cognitive decline was robustly associated with the decline in white matter integrity over time across both groups (ptfce-FWE<0·0001, sr2=0·004). In participants with MDD, changes in white matter integrity (p=0·0040, ß=0·071) and adverse depressive disease course (p=0·0022, ß=-0·073) independently predicted lower cognitive performance at follow-up. INTERPRETATION: Alterations of white matter integrity occurred over time to a greater extent in participants with MDD than in healthy controls, and decline in white matter integrity was associated with a decline in cognitive performance across groups. Our findings emphasise the crucial role of white matter microstructure and disease progression in depression-related cognitive dysfunction, making both priority targets for future treatment development. FUNDING: German Research Foundation (DFG).


Asunto(s)
Disfunción Cognitiva , Trastorno Depresivo Mayor , Sustancia Blanca , Humanos , Trastorno Depresivo Mayor/patología , Adulto , Femenino , Masculino , Estudios de Casos y Controles , Persona de Mediana Edad , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Alemania/epidemiología , Estudios Prospectivos , Disfunción Cognitiva/patología , Adulto Joven , Pruebas Neuropsicológicas , Imagen de Difusión por Resonancia Magnética , Adolescente , Anciano
2.
Mol Autism ; 15(1): 44, 2024 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380071

RESUMEN

BACKGROUND: Autistic-like traits (ALT) are prevalent across the general population and might be linked to some facets of a broader autism spectrum disorder (ASD) phenotype. Recent studies suggest an association of these traits with both genetic and brain structural markers in non-autistic individuals, showing similar spatial location of findings observed in ASD and thus suggesting a potential neurobiological continuum. METHODS: In this study, we first tested an association of ALTs (assessed with the AQ questionnaire) with cortical complexity, a cortical surface marker of early neurodevelopment, and then the association with disrupted functional connectivity. We analysed structural T1-weighted and resting-state functional MRI scans in 250 psychiatrically healthy individuals without a history of early developmental disorders, in a first step using the CAT12 toolbox for cortical complexity analysis and in a second step we used regional cortical complexity findings to apply the CONN toolbox for seed-based functional connectivity analysis. RESULTS: Our findings show a significant negative correlation of both AQ total and AQ attention switching subscores with left superior temporal sulcus (STS) cortical folding complexity, with the former being significantly correlated with STS to left lateral occipital cortex connectivity, while the latter showed significant positive correlation of STS to left inferior/middle frontal gyrus connectivity (n = 233; all p < 0.05, FWE cluster-level corrected). Additional analyses also revealed a significant correlation of AQ attention to detail subscores with STS to left lateral occipital cortex connectivity. LIMITATIONS: Phenotyping might affect association results (e.g. choice of inventories); in addition, our study was limited to subclinical expressions of autistic-like traits. CONCLUSIONS: Our findings provide further evidence for biological correlates of ALT even in the absence of clinical ASD, while establishing a link between structural variation of early developmental origin and functional connectivity.


Asunto(s)
Imagen por Resonancia Magnética , Lóbulo Temporal , Humanos , Masculino , Femenino , Adulto , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Adolescente , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Mapeo Encefálico/métodos , Fenotipo
3.
bioRxiv ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39282436

RESUMEN

The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We employed deep autoencoders in an anomaly detection framework, combined with a confounder removal step integrating training and external validation. The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs. Our generalizable framework enabled the identification of subject- and group-level brain normative-deviating patterns, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.

4.
Nat Commun ; 15(1): 5996, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39013848

RESUMEN

Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.


Asunto(s)
Algoritmos , Sustancia Gris , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Masculino , Femenino , Adulto , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Aprendizaje Automático , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Europa (Continente) , Neuroimagen , Reproducibilidad de los Resultados , América del Norte , Hipocampo/diagnóstico por imagen , Hipocampo/patología
5.
Am J Psychiatry ; 181(8): 728-740, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38859702

RESUMEN

OBJECTIVE: Specific phobia is a common anxiety disorder, but the literature on associated brain structure alterations exhibits substantial gaps. The ENIGMA Anxiety Working Group examined brain structure differences between individuals with specific phobias and healthy control subjects as well as between the animal and blood-injection-injury (BII) subtypes of specific phobia. Additionally, the authors investigated associations of brain structure with symptom severity and age (youths vs. adults). METHODS: Data sets from 31 original studies were combined to create a final sample with 1,452 participants with phobia and 2,991 healthy participants (62.7% female; ages 5-90). Imaging processing and quality control were performed using established ENIGMA protocols. Subcortical volumes as well as cortical surface area and thickness were examined in a preregistered analysis. RESULTS: Compared with the healthy control group, the phobia group showed mostly smaller subcortical volumes, mixed surface differences, and larger cortical thickness across a substantial number of regions. The phobia subgroups also showed differences, including, as hypothesized, larger medial orbitofrontal cortex thickness in BII phobia (N=182) compared with animal phobia (N=739). All findings were driven by adult participants; no significant results were observed in children and adolescents. CONCLUSIONS: Brain alterations associated with specific phobia exceeded those of other anxiety disorders in comparable analyses in extent and effect size and were not limited to reductions in brain structure. Moreover, phenomenological differences between phobia subgroups were reflected in diverging neural underpinnings, including brain areas related to fear processing and higher cognitive processes. The findings implicate brain structure alterations in specific phobia, although subcortical alterations in particular may also relate to broader internalizing psychopathology.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Fóbicos , Humanos , Trastornos Fóbicos/patología , Adulto , Femenino , Masculino , Niño , Adolescente , Adulto Joven , Persona de Mediana Edad , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Preescolar , Anciano de 80 o más Años , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Animales , Estudios de Casos y Controles
6.
Hum Brain Mapp ; 45(8): e26682, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38825977

RESUMEN

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.


Asunto(s)
Trastorno Bipolar , Imagen por Resonancia Magnética , Obesidad , Análisis de Componente Principal , Humanos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/patología , Adulto , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Obesidad/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Análisis por Conglomerados , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/patología
7.
Transl Psychiatry ; 14(1): 235, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830892

RESUMEN

There is a lack of knowledge regarding the relationship between proneness to dimensional psychopathological syndromes and the underlying pathogenesis across major psychiatric disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizoaffective Disorder (SZA), and Schizophrenia (SZ). Lifetime psychopathology was assessed using the OPerational CRITeria (OPCRIT) system in 1,038 patients meeting DSM-IV-TR criteria for MDD, BD, SZ, or SZA. The cohort was split into two samples for exploratory and confirmatory factor analyses. All patients were scanned with 3-T MRI, and data was analyzed with the CAT-12 toolbox in SPM12. Psychopathological factor scores were correlated with gray matter volume (GMV) and cortical thickness (CT). Finally, factor scores were used for exploratory genetic analyses including genome-wide association studies (GWAS) and polygenic risk score (PRS) association analyses. Three factors (paranoid-hallucinatory syndrome, PHS; mania, MA; depression, DEP) were identified and cross-validated. PHS was negatively correlated with four GMV clusters comprising parts of the hippocampus, amygdala, angular, middle occipital, and middle frontal gyri. PHS was also negatively associated with the bilateral superior temporal, left parietal operculum, and right angular gyrus CT. No significant brain correlates were observed for the two other psychopathological factors. We identified genome-wide significant associations for MA and DEP. PRS for MDD and SZ showed a positive effect on PHS, while PRS for BD showed a positive effect on all three factors. This study investigated the relationship of lifetime psychopathological factors and brain morphometric and genetic markers. Results highlight the need for dimensional approaches, overcoming the limitations of the current psychiatric nosology.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Estudio de Asociación del Genoma Completo , Sustancia Gris , Imagen por Resonancia Magnética , Trastornos Psicóticos , Esquizofrenia , Humanos , Masculino , Femenino , Adulto , Trastorno Bipolar/genética , Trastorno Bipolar/patología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/patología , Esquizofrenia/genética , Esquizofrenia/patología , Esquizofrenia/diagnóstico por imagen , Trastornos Psicóticos/genética , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/patología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Persona de Mediana Edad , Análisis Factorial , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Psicopatología , Herencia Multifactorial/genética , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen
8.
Artículo en Inglés | MEDLINE | ID: mdl-38914850

RESUMEN

While most people are right-handed, a minority are left-handed or mixed-handed. It has been suggested that mental and developmental disorders are associated with increased prevalence of left-handedness and mixed-handedness. However, substantial heterogeneity exists across disorders, indicating that not all disorders are associated with a considerable shift away from right-handedness. Increased frequencies in left- and mixed-handedness have also been associated with more severe clinical symptoms, indicating that symptom severity rather than diagnosis explains the high prevalence of non-right-handedness in mental disorders. To address this issue, the present study investigated the association between handedness and measures of stress reactivity, depression, mania, anxiety, and positive and negative symptoms in a large sample of 994 healthy controls and 1213 patients with DSM IV affective disorders, schizoaffective disorders, or schizophrenia. A series of complementary analyses revealed lower lateralization and a higher percentage of mixed-handedness in patients with major depression (14.9%) and schizophrenia (24.0%) compared to healthy controls (12%). For patients with schizophrenia, higher symptom severity was associated with an increasing tendency towards left-handedness. No associations were found for patients diagnosed with major depression, bipolar disorder, or schizoaffective disorder. In healthy controls, no association between hand preference and symptoms was evident. Taken together, these findings suggest that both diagnosis and symptom severity are relevant for the shift away from right-handedness in mental disorders like schizophrenia and major depression.

9.
Brain Behav Immun ; 119: 978-988, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761819

RESUMEN

BACKGROUND: Neuroinflammation affects brain tissue integrity in multiple sclerosis (MS) and may have a role in major depressive disorder (MDD). Whether advanced magnetic resonance imaging characteristics of the gray-to-white matter border serve as proxy of neuroinflammatory activity in MDD and MS remain unknown. METHODS: We included 684 participants (132 MDD patients with recurrent depressive episodes (RDE), 70 MDD patients with a single depressive episode (SDE), 222 MS patients without depressive symptoms (nMS), 58 MS patients with depressive symptoms (dMS), and 202 healthy controls (HC)). 3 T-T1w MRI-derived gray-to-white matter contrast (GWc) was used to reconstruct and characterize connectivity alterations of GWc-covariance networks by means of modularity, clustering coefficient, and degree. A cross-validated support vector machine was used to test the ability of GWc to stratify groups according to their depression symptoms, measured with BDI, at the single-subject level in MS and MDD independently. FINDINGS: MS and MDD patients showed increased modularity (ANOVA partial-η2 = 0.3) and clustering (partial-η2 = 0.1) compared to HC. In the subgroups, a linear trend analysis attested a gradient of modularity increases in the form: HC, dMS, nMS, SDE, and RDE (ANOVA partial-η2 = 0.28, p < 0.001) while this trend was less evident for clustering coefficient. Reduced morphological integrity (GWc) was seen in patients with increased depressive symptoms (partial-η2 = 0.42, P < 0.001) and was associated with depression scores across patient groups (r = -0.2, P < 0.001). Depressive symptoms in MS were robustly classified (88 %). CONCLUSIONS: Similar structural network alterations in MDD and MS exist, suggesting possible common inflammatory events like demyelination, neuroinflammation that are caught by GWc analyses. These alterations may vary depending on the severity of symptoms and in the case of MS may elucidate the occurrence of comorbid depression.


Asunto(s)
Encéfalo , Depresión , Trastorno Depresivo Mayor , Sustancia Gris , Inflamación , Imagen por Resonancia Magnética , Esclerosis Múltiple , Sustancia Blanca , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple/psicología , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Persona de Mediana Edad , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Depresión/fisiopatología , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Enfermedades Neuroinflamatorias/diagnóstico por imagen
10.
Mol Psychiatry ; 29(10): 3151-3159, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38693319

RESUMEN

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Factor de Necrosis Tumoral alfa , Humanos , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/metabolismo , Masculino , Femenino , Adulto , Factor de Necrosis Tumoral alfa/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatología , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Herencia Multifactorial/genética , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Velocidad de Procesamiento
11.
Psychol Med ; : 1-11, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801091

RESUMEN

BACKGROUND: Individuals at risk for bipolar disorder (BD) have a wide range of genetic and non-genetic risk factors, like a positive family history of BD or (sub)threshold affective symptoms. Yet, it is unclear whether these individuals at risk and those diagnosed with BD share similar gray matter brain alterations. METHODS: In 410 male and female participants aged 17-35 years, we compared gray matter volume (3T MRI) between individuals at risk for BD (as assessed using the EPIbipolar scale; n = 208), patients with a DSM-IV-TR diagnosis of BD (n = 87), and healthy controls (n = 115) using voxel-based morphometry in SPM12/CAT12. We applied conjunction analyses to identify similarities in gray matter volume alterations in individuals at risk and BD patients, relative to healthy controls. We also performed exploratory whole-brain analyses to identify differences in gray matter volume among groups. ComBat was used to harmonize imaging data from seven sites. RESULTS: Both individuals at risk and BD patients showed larger volumes in the right putamen than healthy controls. Furthermore, individuals at risk had smaller volumes in the right inferior occipital gyrus, and BD patients had larger volumes in the left precuneus, compared to healthy controls. These findings were independent of course of illness (number of lifetime manic and depressive episodes, number of hospitalizations), comorbid diagnoses (major depressive disorder, attention-deficit hyperactivity disorder, anxiety disorder, eating disorder), familial risk, current disease severity (global functioning, remission status), and current medication intake. CONCLUSIONS: Our findings indicate that alterations in the right putamen might constitute a vulnerability marker for BD.

13.
Mol Psychiatry ; 29(10): 3086-3096, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38671214

RESUMEN

Formal thought disorder (FTD) is a clinical key factor in schizophrenia, but the neurobiological underpinnings remain unclear. In particular, the relationship between FTD symptom dimensions and patterns of regional brain volume loss in schizophrenia remains to be established in large cohorts. Even less is known about the cellular basis of FTD. Our study addresses these major obstacles by enrolling a large multi-site cohort acquired by the ENIGMA Schizophrenia Working Group (752 schizophrenia patients and 1256 controls), to unravel the neuroanatomy of FTD in schizophrenia and using virtual histology tools on implicated brain regions to investigate the cellular basis. Based on the findings of previous clinical and neuroimaging studies, we decided to separately explore positive, negative and total formal thought disorder. We used virtual histology tools to relate brain structural changes associated with FTD to cellular distributions in cortical regions. We identified distinct neural networks positive and negative FTD. Both networks encompassed fronto-occipito-amygdalar brain regions, but positive and negative FTD demonstrated a dissociation: negative FTD showed a relative sparing of orbitofrontal cortical thickness, while positive FTD also affected lateral temporal cortices. Virtual histology identified distinct transcriptomic fingerprints associated for both symptom dimensions. Negative FTD was linked to neuronal and astrocyte fingerprints, while positive FTD also showed associations with microglial cell types. These results provide an important step towards linking FTD to brain structural changes and their cellular underpinnings, providing an avenue for a better mechanistic understanding of this syndrome.


Asunto(s)
Encéfalo , Esquizofrenia , Psicología del Esquizofrénico , Humanos , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Masculino , Femenino , Adulto , Encéfalo/patología , Persona de Mediana Edad , Neuroimagen/métodos , Estudios de Cohortes , Imagen por Resonancia Magnética/métodos , Pensamiento/fisiología
14.
Mol Psychiatry ; 29(9): 2724-2732, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38553539

RESUMEN

Recurrences of depressive episodes in major depressive disorder (MDD) can be explained by the diathesis-stress model, suggesting that stressful life events (SLEs) can trigger MDD episodes in individuals with pre-existing vulnerabilities. However, the longitudinal neurobiological impact of SLEs on gray matter volume (GMV) in MDD and its interaction with early-life adversity remains unresolved. In 754 participants aged 18-65 years (362 MDD patients; 392 healthy controls; HCs), we assessed longitudinal associations between SLEs (Life Events Questionnaire) and whole-brain GMV changes (3 Tesla MRI) during a 2-year interval, using voxel-based morphometry in SPM12/CAT12. We also explored the potential moderating role of childhood maltreatment (Childhood Trauma Questionnaire) on these associations. Over the 2-year interval, HCs demonstrated significant GMV reductions in the middle frontal, precentral, and postcentral gyri in response to higher levels of SLEs, while MDD patients showed no such GMV changes. Childhood maltreatment did not moderate these associations in either group. However, MDD patients who had at least one depressive episode during the 2-year interval, compared to those who did not, or HCs, showed GMV increases in the middle frontal, precentral, and postcentral gyri associated with an increase in SLEs and childhood maltreatment. Our findings indicate distinct GMV changes in response to SLEs between MDD patients and HCs. GMV decreases in HCs may represent adaptive responses to stress, whereas GMV increases in MDD patients with both childhood maltreatment and a depressive episode during the 2-year interval may indicate maladaptive changes, suggesting a neural foundation for the diathesis-stress model in MDD recurrences.


Asunto(s)
Trastorno Depresivo Mayor , Sustancia Gris , Imagen por Resonancia Magnética , Estrés Psicológico , Humanos , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/fisiopatología , Femenino , Sustancia Gris/patología , Masculino , Adulto , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Adolescente , Anciano , Adulto Joven , Estudios Longitudinales , Encéfalo/patología , Acontecimientos que Cambian la Vida , Experiencias Adversas de la Infancia , Maltrato a los Niños/psicología
15.
Psychiatry Res Neuroimaging ; 340: 111808, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492542

RESUMEN

Borderline personality disorder (BPD) is characterised by structural and functional brain alterations. Yet, there is little data on functional connectivity (FC) across different levels of brain networks and parameters. In this study, we applied a multi-level approach to analyse abnormal functional connectivity. We analysed resting-state functional magnetic resonance imaging (fMRI) data sets of 69 subjects: 17 female BPD patients and 51 age-matched psychiatrically healthy female controls. fMRI was analysed using CONN toolbox including: a) seed-based FC analysis of amygdala connectivity, b) independent component analysis (ICA) based network analysis of intra- and inter-network FC of selected resting-state networks (DMN, SN, FPN), as well as c) graph-theory based measures of network-level characteristics. We show group-level seed FC differences with higher amygdala to contralateral (superior) occipital cortex connectivity in BPD, which correlated with schema-therapy derived measures of symptoms/traits across the entire cohort. While there was no significant group effect on DMN, SN, or FPN intra-network or inter-network FC, we show a significant group difference for local efficiency and cluster coefficient for a DMN-linked cerebellum cluster. Our findings demonstrate BPD-linked changes in FC across multiple levels of observation, which supports a multi-level analysis for future studies to consider different aspects of functional connectome alterations.


Asunto(s)
Trastorno de Personalidad Limítrofe , Conectoma , Humanos , Femenino , Trastorno de Personalidad Limítrofe/diagnóstico por imagen , Encéfalo , Amígdala del Cerebelo/diagnóstico por imagen , Conectoma/métodos , Lóbulo Occipital
16.
J Affect Disord ; 355: 12-21, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38548192

RESUMEN

BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Humanos , Depresión/etiología , Trastorno Depresivo Mayor/epidemiología , Factores Protectores , Estudios Transversales , Autoinforme
17.
Mol Psychiatry ; 29(6): 1869-1881, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38336840

RESUMEN

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Conectoma/métodos , Adulto , Femenino , Masculino , Imagen por Resonancia Magnética/métodos , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Vías Nerviosas/patología , Adulto Joven
18.
J Affect Disord ; 351: 755-764, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38302065

RESUMEN

BACKGROUND: Case-control studies in major depression have established numerous regional grey and white matter effects in fronto-limbic brain regions. Yet, brain structural studies of dimensional depressive psychopathology within the subclinical spectrum are still limited, in particular for multi-modal imaging approaches. METHODS: Using voxel-based and surface-based morphometry (cortical thickness) in combination with diffusion tensor imaging (DTI) in a large non-clinical sample (N = 300), we correlated grey and white matter structural variation with subclinical depressive symptoms assessed with Beck's Depression inventory (BDI). RESULTS: We found a significant decrease of axial diffusivity associated with higher BDI scores in the left hippocampal part of the cingulum bundle (p < 0.05, threshold free cluster enhanced [TFCE] p-value) and some grey matter trend results e.g., a non-linear negative correlation of cortical thickness with depressive symptom load in the right pre/postcentral cortex (pFWE = 0.054, family wise error [FWE] peak level corrected) and a trend in grey matter volume decrease in women in the inferior frontal gyrus (pFWE = 0.054). LIMITATIONS: Since all grey matter effects disappear after FWE correction, we assume more stable effects in a larger, less homogenous sample enriched by help-seeking subjects covering a wider range of subclinical psychopathology. CONCLUSION: Our study adds correlations between single depressive symptoms and brain structure to a growing literature. Since subclinical depression is increasingly recognised to be relevant in our understanding of manifest depression, early detection and identification of potential brain correlates of minor depressive symptoms has the potential to expand and reveal possible biomarkers and early psychological treatment.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Humanos , Femenino , Imagen de Difusión Tensora/métodos , Depresión/diagnóstico por imagen , Depresión/patología , Encéfalo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
19.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332015

RESUMEN

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Asunto(s)
Trastorno Bipolar , Sustancia Blanca , Humanos , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/genética , Sustancia Gris/diagnóstico por imagen , Encéfalo , Sustancia Blanca/diagnóstico por imagen , Corteza Cerebral , Anisotropía
20.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370846

RESUMEN

Background: Schizophrenia is associated with an increased risk of aggressive behaviour, which may partly be explained by illness-related changes in brain structure. However, previous studies have been limited by group-level analyses, small and selective samples of inpatients and long time lags between exposure and outcome. Methods: This cross-sectional study pooled data from 20 sites participating in the international ENIGMA-Schizophrenia Working Group. Sites acquired T1-weighted and diffusion-weighted magnetic resonance imaging scans in a total of 2095 patients with schizophrenia and 2861 healthy controls. Measures of grey matter volume and white matter microstructural integrity were extracted from the scans using harmonised protocols. For each measure, normative modelling was used to calculate how much patients deviated (in z-scores) from healthy controls at the individual level. Ordinal regression models were used to estimate the associations of these deviations with concurrent aggressive behaviour (as odds ratios [ORs] with 99% confidence intervals [CIs]). Mediation analyses were performed for positive symptoms (i.e., delusions, hallucinations and disorganised thinking), impulse control and illness insight. Aggression and potential mediators were assessed with the Positive and Negative Syndrome Scale, Scale for the Assessment of Positive Symptoms or Brief Psychiatric Rating Scale. Results: Aggressive behaviour was significantly associated with reductions in total cortical volume (OR [99% CI] = 0.88 [0.78, 0.98], p = .003) and global white matter integrity (OR [99% CI] = 0.72 [0.59, 0.88], p = 3.50 × 10-5) and additional reductions in dorsolateral prefrontal cortex volume (OR [99% CI] = 0.85 [0.74, 0.97], p =.002), inferior parietal lobule volume (OR [99% CI] = 0.76 [0.66, 0.87], p = 2.20 × 10-7) and internal capsule integrity (OR [99% CI] = 0.76 [0.63, 0.92], p = 2.90 × 10-4). Except for inferior parietal lobule volume, these associations were largely mediated by increased severity of positive symptoms and reduced impulse control. Conclusions: This study provides evidence that the co-occurrence of positive symptoms, poor impulse control and aggressive behaviour in schizophrenia has a neurobiological basis, which may inform the development of therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...