RESUMEN
A "chemical linearization" approach was applied to synthetic peptide macrocycles to enable their de novo sequencing from mixtures using nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS). This approachâpreviously applied to individual macrocycles but not to mixturesâinvolves cleavage of the peptide backbone at a defined position to give a product capable of generating sequence-determining fragment ions. Here, we first established the compatibility of "chemical linearization" by Edman degradation with a prominent macrocycle scaffold based on bis-Cys peptides cross-linked with the m-xylene linker, which are of major significance in therapeutics discovery. Then, using macrocycle libraries of known sequence composition, the ability to recover accurate de novo assignments to linearized products was critically tested using performance metrics unique to mixtures. Significantly, we show that linearized macrocycles can be sequenced with lower recall compared to linear peptides but with similar accuracy, which establishes the potential of using "chemical linearization" with synthetic libraries and selection procedures that yield compound mixtures. Sodiated precursor ions were identified as a significant source of high-scoring but inaccurate assignments, with potential implications for improving automated de novo sequencing more generally.
RESUMEN
All-hydrocarbon, i, i+7 stapled peptide inhibitors of the p53-Mdm2 interaction have emerged as promising new leads for cancer therapy. Typical chemical synthesis via olefin metathesis results in the formation of both E- and Z-isomers, an observation that is rarely disclosed but may be of importance in targeting PPI. In this study, we evaluated the effect of staple geometry on the biological activity of five p53-reactivating peptides. We also present strategies for the modulation of the E/Z ratio and attainment of the hydrogenated adduct through repurposing of the metathesis catalyst.