Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717980

RESUMEN

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Antivenenos/farmacología , Antivenenos/inmunología , Animales , México , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Viperidae , Crotalus , Venenos de Crotálidos/inmunología
2.
Biochimie ; 225: 81-88, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762000

RESUMEN

The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.

3.
Toxicon ; 240: 107658, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395261

RESUMEN

Our study quantifies venom production in nine Mexican coral snake species (Micrurus), encompassing 76 specimens and 253 extractions. Noteworthy variations were observed, with M. diastema and M. laticollaris displaying diverse yields, ranging from 0.3 mg to 59 mg. For animals for which we have length data, there is a relationship between size and venom quantity. Twenty-eight percent of the observed variability in venom production can be explained by snake size, suggesting that other factors influence the amount of obtained venom. These findings are pivotal for predicting venom effects and guiding antivenom interventions. Our data offer insights into Micrurus venom yields, laying the groundwork for future research and aiding in medical response strategies. This study advances understanding coral snake venom production, facilitating informed medical responses to coral snake bites.


Asunto(s)
Antozoos , Serpientes de Coral , Mordeduras de Serpientes , Animales , México , Venenos Elapídicos , Antivenenos , Elapidae
4.
Biochimie ; 216: 160-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890695

RESUMEN

Crotalus culminatus is a medically significant species of rattlesnake in Mexico [1]. While the proteomic composition of its venom has been previously reported for both juvenile and adult specimens, there has been limited research into its functional properties, with only a few studies, including one focusing on coagulotoxicity mechanisms. In this study, we aimed to compare the biochemical and biological activities of the venom of juvenile and adult snakes. Additionally, we assessed antibody production using the venoms of juveniles and adults as immunogens in rabbits. Our findings reveal lethality and proteolytic activity differences between the venoms of juveniles and adults. Notably, juvenile venoms exhibited high proportions of crotamine, while adult venoms displayed a reduction of this component. A commercially available antivenom demonstrated effective neutralization of lethality of both juvenile and adult venoms in mice. However, it failed to neutralize the paralytic activity induced by crotamine, which, in contrast, was successfully inhibited by antibodies obtained from hyperimmunized rabbits. These results suggest the potential inclusion of C. culminatus venom from juveniles in commercial antivenom immunization schemes to generate antibodies targeting this small myotoxin.


Asunto(s)
Antivenenos , Venenos de Crotálidos , Conejos , Animales , Ratones , Antivenenos/farmacología , Crotalus , Proteómica , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/química , Neurotoxinas , México
5.
Toxicon ; 234: 107280, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673344

RESUMEN

To corroborate the ontogenetic shift in the venom composition of the Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) previously reported through the census approach, we evaluated the shift in the protein profile, lethality, and proteolytic and phospholipase activities of four venom samples obtained in 2015, 2018, 2019, and 2021 from one C. m. nigrescens individual (CMN06) collected in Durango, Mexico. We demonstrated that the venom of C. m. nigrescens changed from a myotoxin-rich venom to a phospholipase A2 and snake venom metalloproteinase-rich venom. Additionally, the proteolytic and phospholipase activities increased with age, but the lethality decreased approximately three times.

6.
Toxins (Basel) ; 15(8)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37624244

RESUMEN

The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.


Asunto(s)
Bothrops , Venenos de Crotálidos , Crotalinae , Lagartos , Síndromes de Neurotoxicidad , Humanos , Animales , Evolución Biológica , Venenos Elapídicos , América Central , Mamíferos
7.
Biochimie ; 202: 226-236, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36057372

RESUMEN

The most enigmatic group of rattlesnakes is the long-tailed rattlesnake group, consisting of three species: Crotalus ericsmithi, Crotalus lannomi and Crotalus stejnegeri. These species have been the least studied rattlesnakes in all aspects, and no study on the characterization of their venoms has been carried out to date. Our main objective was to investigate the proteomic composition, as well as some of the biochemical and toxic activities of these venoms, and their neutralization by commercial antivenom. The venom proteome of C. ericsmithi mainly contains metalloproteinases (SVMP; 49.3%), phospholipases A2 (PLA2; 26.2%), disintegrins (Dis; 12.6%), and snake venom serine proteases (SVSP; 6.8%), while C. lannomi venom mainly consists of SVMP (47.1%), PLA2 (19.3%), Dis (18.9%), SVSP (6%) and l-amino acid oxidase (LAAO; 2.6%). For these venoms high lethality was recorded in mice, the most potent being that of C. lannomi (LD50 of 0.99 µg/g body weight), followed by C. ericsmithi (1.30 µg/g) and finally C. stejnegeri (1.79 µg/g). The antivenoms Antivipmyn® from SILANES and Fabotherapic polyvalent antiviperin® from BIRMEX neutralized the lethal activity of the three venoms. Although this group of snakes is phylogenetically related to the C. viridis group, no neurotoxic components (crotoxin or crotoxin-like proteins) common in rattlesnakes were found in their venoms. This study expands current knowledge on the venoms of understudied snake species of the Mexican herpetofauna.


Asunto(s)
Crotalus , Crotoxina , Animales , Ratones , Ponzoñas , Proteómica , Proteoma
8.
Toxins (Basel) ; 14(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36006194

RESUMEN

Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.


Asunto(s)
Venenos de Crotálidos , Crotoxina , Animales , Antivenenos , Colombia , Crotalus , Fosfolipasas A2
9.
Toxins (Basel) ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893753

RESUMEN

Within Neotropical pit-vipers, the Mexican/Central-American clade consisting of Atropoides, Cerrophidion, Metlapilcoatlus, and Porthidium is a wide-ranging, morphologically and ecologically diverse group of snakes. Despite their prevalence, little is known of the functional aspects of their venoms. This study aimed to fill the knowledge gap regarding coagulotoxic effects and to examine the potential of different therapeutic approaches. As a general trait, the venoms were shown to be anticoagulant but were underpinned by diverse biochemical actions. Pseudo-procoagulant activity (i.e., thrombin-like), characterized by the direct cleavage of fibrinogen to form weak fibrin clots, was evident for Atropoides picadoi, Cerrophidiontzotzilorum, Metlapilcoatlus mexicanus, M. nummifer, M. occiduus, M. olmec, and Porthidium porrasi. In contrast, other venoms cleaved fibrinogen in a destructive (non-clotting) manner, with C. godmani and C. wilsoni being the most potent. In addition to actions on fibrinogen, clotting enzymes were also inhibited. FXa was only weakly inhibited by most species, but Cerrophidion godmani and C. wilsoni were extremely strong in their inhibitory action. Other clotting enzymes were more widely inhibited by diverse species spanning the full taxonomical range, but in each case, there were species that had these traits notably amplified relatively to the others. C. godmani and C. wilsoni were the most potent amongst those that inhibited the formation of the prothrombinase complex and were also amongst the most potent inhibitors of Factor XIa. While most species displayed only low levels of thrombin inhibition, Porthidium dunni potently inhibited this clotting factor. The regional polyvalent antivenom produced by Instituto Picado Clodomiro was tested and was shown to be effective against the diverse anticoagulant pathophysiological effects. In contrast to the anticoagulant activities of the other species, Porthidium volcanicum was uniquely procoagulant through the activation of Factor VII and Factor XII. This viperid species is the first snake outside of the Oxyuranus/Pseudonaja elapid snake clade to be shown to activate FVII and the first snake venom of any kind to activate FXII. Interestingly, while small-molecule metalloprotease inhibitors prinomastat and marimastat demonstrated the ability to prevent the procoagulant toxicity of P. volcanicum, neither ICP antivenom nor inhibitor DMPS showed this effect. The extreme variation among the snakes here studied underscores how venom is a dynamic trait and how this can shape clinical outcomes and influence evolving treatment strategies.


Asunto(s)
Venenos de Crotálidos , Crotalinae , Viperidae , Animales , Anticoagulantes/farmacología , Antivenenos/farmacología , Venenos de Crotálidos/química , Venenos Elapídicos , Elapidae , Fibrinógeno , Venenos de Serpiente , Trombina
10.
Biochimie ; 201: 55-62, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35781049

RESUMEN

Alpha-latrotoxin (ɑLTx) is the component responsible for causing the pathophysiology in patients bitten by spiders from the genus Latrodectus, commonly known as black widow spiders. The current antivenom used to treat these envenomations in Mexico is produced using the venom of thousands of spiders, obtained through electrical stimulation. This work aimed to produce this protein as well as two of its fragments in a bacterial model, to evaluate their use as immunogens to produce neutralizing hyperimmune sera, in rabbits. ɑLTx is a 130 kDa protein which has not yet been obtained in a soluble active form using bacterial models. In the present work, ɑLTx and two of its fragments, ankyrin domain and amino terminal domain (LTxAnk and LTxNT) were produced in bacteria and solubilized from inclusion bodies using N-lauroyl sarcosine. These three proteins were used for hyperimmunization in order to evaluate their potential as immunogens for the production of neutralizing hyperimmune sera against the complete venom of Latrodectus mactans. The hyperimmune sera obtained using the complete ɑLTx as well as the LTxNT, was capable of preventing death of mice envenomated with 3 LD50s of venom, both in preincubation and rescue experiments. Conversely, the serum obtained using the LTxAnk fragment, generated only partial protection and a delay in the time of death, even with a maximum dose of 450 µL. We therefore conclude that the produced proteins show great potential for their use as immunogens and should be further tested in large animals, such as horses.


Asunto(s)
Araña Viuda Negra , Venenos de Araña , Animales , Ancirinas , Antivenenos/farmacología , Antivenenos/uso terapéutico , Caballos , Ratones , Conejos
11.
Toxicon ; 211: 44-49, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35317994

RESUMEN

Mexico is home to an extreme diversity of herpetofauna, with venomous snakes imposing a significant burden upon public health. However, little is known about the pathophysiological venom actions of a number of potentially medically important species, including those from the genera Mixcoatlus and Ophryacus. Our study aimed to fill this knowledge gap by ascertaining the effects of Mixcoatlus melanurus, Ophryacus smaragdinus and Ophryacus sphenophrys venoms upon the coagulation cascade utilising a series of well-validated coagulation assays. While M. melanurus venom exhibited no significant coagulotoxic activities, both O. smaragdinus and O. sphenophrys venoms exerted multiple coagulotoxic activities upon the coagulation cascade which would be contributing towards a net anticoagulant venom activity. O. sphenophrys significantly inhibited the spontaneous clotting of plasma but O. smaragdinus did not. They differed in that O. sphenophrys inhibited the clotting enzymes factor IXa and factor XIa. However, O. smaragdinus was able to inhibit factor Xa in isolation-assays. Both O. smaragdinus and O. sphenophrys degraded fibrinogen, with O. smaragdinus venom causing a significantly weaker fibrinogen clot than O. sphenophrys. In vitro antivenom efficacy assays were undertaken to ascertain the efficacy of Antivipmyn-Tri antivenom (which is made using Bothrops, Crotalus, and Lachesis venoms). This antivenom was chosen due to the phylogenetic uncertain position of the Ophryacus, but with some molecular genetics' studies placing it as sister to Lachesis. Despite the complexity of the antivenom immunising mixture, the anticoagulant activity of O. sphenophrys venom was relatively poorly neutralised by the antivenom. This work contributes to the understanding of the functional activity of Mixcoatlus and Ophryacus venoms, laying a foundation for future work investigating the coagulotoxins present within Ophryacus venoms in addition to providing data useful for the evidence-based design of clinical management strategies for the envenomed patient.


Asunto(s)
Crotalinae , Viperidae , Animales , Anticoagulantes/farmacología , Antivenenos/farmacología , Humanos , Filogenia
12.
Toxicon ; 207: 43-47, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35007607

RESUMEN

Here we report, for the first time, a natural hybrid between Crotalus atrox and C. mictlantecuhtli based on intermediate characteristics of the external morphology and venom. Morphologically, the individual had characteristics of both parent species. The hybrid's venom exhibited an intermediate composition including the presence of crotoxin which has never been documented in C. atrox but is well documented in C. mictlantecuhtli. The hybrid's venom was highly toxic and showed an intermediate proteolytic activity between the parental species. The two Mexican antivenoms were able to neutralize the hybrid's venom's lethality.


Asunto(s)
Venenos de Crotálidos , Crotoxina , Animales , Antivenenos , Venenos de Crotálidos/toxicidad , Crotalus , México
13.
Biochimie ; 192: 111-124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34656669

RESUMEN

Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.


Asunto(s)
Antivenenos/química , Crotalus , Crotoxina/química , Animales , Humanos , México , Ratones , Especificidad de la Especie
14.
Toxins (Basel) ; 13(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34437453

RESUMEN

The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30-35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve-hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.


Asunto(s)
Antivenenos/uso terapéutico , Crotalus , Crotoxina/química , Crotoxina/genética , Crotoxina/toxicidad , Parálisis/inducido químicamente , Parálisis/tratamiento farmacológico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Ontologías Biológicas , Variación Genética , México
15.
J Chem Ecol ; 47(10-11): 907-914, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34165686

RESUMEN

The use of venom in predation exerts a corresponding selection pressure for the evolution of venom resistance. One of the mechanisms related to venom resistance in animals (predators or prey of snakes) is the presence of molecules in the blood that can bind venom toxins, and inhibit their pharmacological effects. One such toxin type are venom phospholipase A2s (PLA2s), which have diverse effects including anticoagulant, myotoxic, and neurotoxic activities. BoaγPLI isolated from the blood of Boa constrictor has been previously shown to inhibit venom PLA2s that induced myotoxic and edematogenic activities. Recently, in addition to its previously described and very potent neurotoxic effect, the venoms of American coral snakes (Micrurus species) have been shown to have anticoagulant activity via PLA2 toxins. As coral snakes eat other snakes as a major part of their diet, neonate Boas could be susceptible to predation by this sympatric species. Thus, this work aimed to ascertain if BoaγPLI provided a protective effect against the anticoagulant toxicity of venom from the model species Micrurus laticollaris in addition to its ability shown previously against other toxin types. Using a STA R Max coagulation analyser robot to measure the effect upon clotting time, and TEG5000 thromboelastographers to measure the effect upon clot strength, we evaluated the ability of BoaγPLI to inhibit M. laticollaris venom. Our results indicate that BoaγPLI is efficient at inhibiting the M. laticollaris anticoagulant effect, reducing the time of coagulation (restoring them closer to non-venom control values) and increasing the clot strength (restoring them closer to non-venom control values). These findings demonstrate that endogenous PLA2 inhibitors in the blood of non-venomous snakes are multi-functional and provide broad resistance against a myriad of venom PLA2-driven toxic effects including coagulotoxicity, myotoxicity, and neurotoxicity. This novel form of resistance could be evidence of selective pressures caused by predation from venomous snakes and stresses the need for field-based research aimed to expand our understanding of the evolutionary dynamics of such chemical arms race.


Asunto(s)
Boidae , Serpientes de Coral , Fosfolipasas A2/toxicidad , Proteínas de Reptiles/toxicidad , Venenos de Serpiente/química , Simpatría , Ponzoñas/química , Animales , Fosfolipasas A2/química , Conducta Predatoria , Proteínas de Reptiles/química , Venenos de Serpiente/análisis , Venenos de Serpiente/enzimología , Ponzoñas/análisis , Ponzoñas/enzimología
16.
Toxicon ; 197: 70-78, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33894246

RESUMEN

Crotamine is a paralyzing toxin (MW: ~5 kDa) found in different proportions in some rattlesnake venoms (up to 62%). Mexican pit viper antivenoms have shown low immunoreactivity against crotamine, which is an urgent quality to be improved. The objective of this work was to evaluate the ability of a novel recombinant fusion protein composed of sphingomyelinase D and crotamine, and two whole venoms from Crotalus molossus nigrescens and C. oreganus helleri to produce neutralizing antibodies against crotamine. These immunogens were separately used for immunization procedures in rabbits. Then, we generated three experimental antivenoms to test their cross-reactivity via western-blot against crotamine from 7 species (C. m. nigrescens, C. o. helleri, C. durissus terrificus, C. scutulatus salvini, C. basiliscus, C. culminatus and C. tzabcan). We also performed pre-incubation neutralization experiments in mice to measure the neutralizing potency of each antivenom against crotamine induced hind limb paralysis. Our antivenoms showed broad recognition across crotamine from most of the tested species. Also, neutralization against crotamine paralysis symptom was successfully achieved by our three antivenoms, albeit with different efficiencies. Our results highlight the use of crotamine enriched venoms and our novel recombinant fusion protein as promising immunogens to improve the neutralizing potency against crotamine for the improvement of Mexican antivenoms.


Asunto(s)
Venenos de Crotálidos , Animales , Antivenenos/farmacología , Crotalus , México , Ratones , Pruebas de Neutralización , Conejos , Proteínas Recombinantes de Fusión
17.
Front Immunol ; 12: 612846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815366

RESUMEN

Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Animales , Antivenenos/inmunología , Factores de Coagulación Sanguínea/metabolismo , Pruebas de Coagulación Sanguínea/métodos , Trastornos de las Proteínas de Coagulación/sangre , Trastornos de las Proteínas de Coagulación/diagnóstico , Trastornos de las Proteínas de Coagulación/etiología , Crotalus/clasificación , Crotalus/genética , México , Pruebas de Neutralización
18.
Artículo en Inglés | MEDLINE | ID: mdl-33766656

RESUMEN

What factors influence the evolution of a heavily selected functional trait in a diverse clade? This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the wider context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Our results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables in driving venom evolution. Moreover, the striking inter- and intraspecific variability in venom activity on human blood highlights the considerable variability faced by physicians treating envenomation. This study is the most comprehensive effort to date to describe and characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended to elucidate patterns of variation within species and lineages.


Asunto(s)
Coagulación Sanguínea/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Animales , Crotalus , Evolución Molecular , Fibrinógeno/química , Humanos , Especificidad de la Especie
19.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499001

RESUMEN

The toxin composition of snake venoms and, thus, their functional activity, can vary between and within species. Intraspecific venom variation across a species' geographic range is a major concern for antivenom treatment of envenomations, particularly for countries like French Guiana that lack a locally produced antivenom. Bothrops asper and Bothrops atrox are the most medically significant species of snakes in Latin America, both producing a variety of clinical manifestations, including systemic bleeding. These pathophysiological actions are due to the activation by the venom of the blood clotting factors Factor X and prothrombin, thereby causing severe consumptive coagulopathy. Both species are extremely wide-ranging, and previous studies have shown their venoms to exhibit regional venom variation. In this study, we investigate the differential coagulotoxic effects on human plasma of six venoms (four B. asper and two B. atrox samples) from different geographic locations, spanning from Mexico to Peru. We assessed how the venom variation of these venom samples affects neutralisation by five regionally available antivenoms: Antivipmyn, Antivipmyn-Tri, PoliVal-ICP, Bothrofav, and Soro Antibotrópico (SAB). The results revealed both inter- and intraspecific variations in the clotting activity of the venoms. These variations in turn resulted in significant variation in antivenom efficacy against the coagulotoxic effects of these venoms. Due to variations in the venoms used in the antivenom production process, antivenoms differed in their species-specific or geographical neutralisation capacity. Some antivenoms (PoliVal-ICP, Bothrofav, and SAB) showed species-specific patterns of neutralisation, while another antivenom (Antivipmyn) showed geographic-specific patterns of neutralisation. This study adds to current knowledge of Bothrops venoms and also illustrates the importance of considering evolutionary biology when developing antivenoms. Therefore, these results have tangible, real-world implications by aiding evidence-based design of antivenoms for treatment of the envenomed patient. We stress that these in vitro studies must be backed by future in vivo studies and clinical trials before therapeutic guidelines are issued regarding specific antivenom use in a clinical setting.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Bothrops , Venenos de Crotálidos/antagonistas & inhibidores , Hemorragia/tratamiento farmacológico , Mordeduras de Serpientes/tratamiento farmacológico , Animales , Especificidad de Anticuerpos , Bothrops/inmunología , Bothrops/metabolismo , Reacciones Cruzadas , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/metabolismo , Hemorragia/sangre , Hemorragia/inmunología , Humanos , Mordeduras de Serpientes/sangre , Mordeduras de Serpientes/inmunología , Especificidad de la Especie
20.
Biochimie ; 182: 206-216, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33485932

RESUMEN

The elapid genus, Micruroides, is considered the sister clade of all New World coral snakes (Genus Micrurus), is monotypic, and is represented by Sonoran Coral Snakes, Micruroides euryxanthus. Coral snakes of the genus Micrurus have been reported to have venoms that are predominantly composed of phospholipases A2 (PLA2) or three finger toxins (3FTx), but the venoms of the genus Micruroides are almost completely unstudied. Here, we present the first description of the venom of M. euryxanthus including identification of some proteins as well as transcriptomic, and biological activity assays. The most abundant components within M. euryxanthus venom are 3FTxs (62.3%) and there was relatively low proportion of PLA2s (14.2%). The venom phenotype supports the hypothesis that the common ancestor of Micrurus and Micruroides had a 3FTx-dominated venom. Within the venom, there were two nearly identical α-neurotoxins (α-Ntx), one of which was designated Eurytoxin, that account for approximately 60% of the venom's lethality to mice. Eurytoxin was cloned, expressed in a soluble and active form, and used to produce rabbit hyperimmune serum. This allowed the analysis of its immunochemical properties, showing them to be different from the recombinant αNTx D.H., present in the venoms of some species of Micrurus. Finally, we observed that the commercial antivenom produced in Mexico for coral snake envenomation is unable to neutralize the lethality from M. euryxanthus venom. This work allowed the classification of Micruroides venom into the 3FTx-predominant group and identified the main components responsible for toxicity to mice.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos , Fosfolipasas A2 , Proteínas de Reptiles , Animales , Serpientes de Coral/genética , Serpientes de Coral/metabolismo , Venenos Elapídicos/biosíntesis , Venenos Elapídicos/genética , Fosfolipasas A2/biosíntesis , Fosfolipasas A2/genética , Proteínas de Reptiles/biosíntesis , Proteínas de Reptiles/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA