Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-28548240

RESUMEN

A subject-specific 3-dimensional viscoelastic finite element model of the human head-neck system is presented and investigated based on computed tomography and magnetic resonance biomedical images. Ad hoc imaging processing tools are developed for the reconstruction of the simulation domain geometry and the internal distribution of bone and soft tissues. Material viscoelastic properties are characterized point-wise through an image-based interpolating function used then for assigning the constitutive prescriptions of a heterogenous viscoelastic continuum model. The numerical study is conducted both for modal and time-dependent analyses, compared with similar studies and validated against experimental evidences. Spatiotemporal analyses are performed upon different exponential swept-sine wave-localized stimulations. The modeling approach proposes a generalized, patient-specific investigation of sound wave transmission and attenuation within the human head-neck system comprising skull and brain tissues. Model extensions and applications are finally discussed.


Asunto(s)
Cabeza/fisiología , Cuello/fisiología , Elasticidad , Cabeza/anatomía & histología , Cabeza/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Modelos Anatómicos , Modelos Teóricos , Cuello/anatomía & histología , Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
Comput Methods Biomech Biomed Engin ; 20(2): 171-181, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27456412

RESUMEN

We provide a computational comparison of the performance of stentless and stented aortic prostheses, in terms of aortic root displacements and internal stresses. To this aim, we consider three real patients; for each of them, we draw the two prostheses configurations, which are characterized by different mechanical properties and we also consider the native configuration. For each of these scenarios, we solve the fluid-structure interaction problem arising between blood and aortic root, through Finite Elements. In particular, the Arbitrary Lagrangian-Eulerian formulation is used for the numerical solution of the fluid-dynamic equations and a hyperelastic material model is adopted to predict the mechanical response of the aortic wall and the two prostheses. The computational results are analyzed in terms of aortic flow, internal wall stresses and aortic wall/prosthesis displacements; a quantitative comparison of the mechanical behavior of the three scenarios is reported. The numerical results highlight a good agreement between stentless and native displacements and internal wall stresses, whereas higher/non-physiological stresses are found for the stented case.


Asunto(s)
Aorta/cirugía , Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Adulto , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Bioprótesis , Simulación por Computador , Hemodinámica , Humanos , Masculino , Modelos Teóricos , Stents
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...